summaryrefslogtreecommitdiff
path: root/AK/UFixedBigInt.h
blob: 397eaf042b0f2551f0228ef4e6f819e4bc05c3c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 * Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
 * Copyright (c) 2023, Dan Klishch <danilklishch@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/BigIntBase.h>
#include <AK/BuiltinWrappers.h>
#include <AK/Checked.h>
#include <AK/Concepts.h>
#include <AK/Format.h>
#include <AK/NumericLimits.h>
#include <AK/StdLibExtraDetails.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>

namespace AK {

namespace Detail {
// As noted near the declaration of StaticStorage, bit_size is more like a hint for a storage size.
// The effective bit size is `sizeof(StaticStorage<...>) * 8`. It is a programmer's responsibility
// to ensure that the hinted bit_size is always greater than the actual integer size.
// That said, do not use unaligned (bit_size % 64 != 0) `UFixedBigInt`s if you do not know what you
// are doing.
template<size_t bit_size, typename Storage = StaticStorage<false, bit_size>>
class UFixedBigInt;

// ===== Concepts =====
template<typename T>
constexpr inline size_t assumed_bit_size = 0;
template<>
constexpr inline size_t assumed_bit_size<IntegerWrapper> = bit_width<int>;
template<size_t bit_size>
constexpr inline size_t assumed_bit_size<UFixedBigInt<bit_size>> = bit_size;
template<BuiltInUFixedInt T>
constexpr inline size_t assumed_bit_size<T> = bit_width<T>;

template<typename T>
concept ConvertibleToUFixedInt = (assumed_bit_size<T> != 0);

template<typename T>
concept UFixedInt = (ConvertibleToUFixedInt<T> && !IsSame<T, IntegerWrapper>);

template<typename T>
concept NotBuiltInUFixedInt = (UFixedInt<T> && !BuiltInUFixedInt<T>);

// ===== UFixedBigInt itself =====
template<size_t bit_size>
constexpr auto& get_storage_of(UFixedBigInt<bit_size>& value) { return value.m_data; }

template<size_t bit_size>
constexpr auto& get_storage_of(UFixedBigInt<bit_size> const& value) { return value.m_data; }

template<typename Operand1, typename Operand2, typename Result>
constexpr void mul_internal(Operand1 const& operand1, Operand2 const& operand2, Result& result)
{
    StorageOperations::baseline_mul(operand1, operand2, result, g_null_allocator);
}

template<size_t dividend_size, size_t divisor_size, bool restore_remainder>
constexpr void div_mod_internal( // Include AK/UFixedBigIntDivision.h to use UFixedBigInt division
    StaticStorage<false, dividend_size> const& dividend,
    StaticStorage<false, divisor_size> const& divisor,
    StaticStorage<false, dividend_size>& quotient,
    StaticStorage<false, divisor_size>& remainder);

template<size_t bit_size, typename Storage>
class UFixedBigInt {
    constexpr static size_t static_size = Storage::static_size;
    constexpr static size_t part_size = static_size / 2;
    using UFixedBigIntPart = Conditional<part_size * word_size <= 64, u64, UFixedBigInt<part_size * word_size>>;

public:
    constexpr UFixedBigInt() = default;

    explicit constexpr UFixedBigInt(IntegerWrapper value) { StorageOperations::copy(value.m_data, m_data); }
    consteval UFixedBigInt(int value)
    {
        StorageOperations::copy(IntegerWrapper(value).m_data, m_data);
    }

    template<UFixedInt T>
    requires(sizeof(T) > sizeof(Storage)) explicit constexpr UFixedBigInt(T const& value)
    {
        StorageOperations::copy(get_storage_of(value), m_data);
    }

    template<UFixedInt T>
    requires(sizeof(T) <= sizeof(Storage)) constexpr UFixedBigInt(T const& value)
    {
        StorageOperations::copy(get_storage_of(value), m_data);
    }

    constexpr UFixedBigInt(UFixedBigIntPart const& low, UFixedBigIntPart const& high)
    requires(static_size % 2 == 0)
    {
        decltype(auto) low_storage = get_storage_of(low);
        decltype(auto) high_storage = get_storage_of(high);
        for (size_t i = 0; i < part_size; ++i)
            m_data[i] = low_storage[i];
        for (size_t i = 0; i < part_size; ++i)
            m_data[i + part_size] = high_storage[i];
    }

    template<UFixedInt T, size_t n>
    requires((assumed_bit_size<T> * n) <= bit_size) constexpr UFixedBigInt(const T (&value)[n])
    {
        size_t offset = 0;

        for (size_t i = 0; i < n; ++i) {
            if (offset % word_size == 0) {
                // Aligned initialization (i. e. u256 from two u128)
                decltype(auto) storage = get_storage_of(value[i]);
                for (size_t i = 0; i < storage.size(); ++i)
                    m_data[i + offset / word_size] = storage[i];
            } else if (offset % word_size == 32 && IsSame<T, u32>) {
                // u32 vector initialization on 64-bit platforms
                m_data[offset / word_size] |= static_cast<DoubleWord>(value[i]) << 32;
            } else {
                VERIFY_NOT_REACHED();
            }
            offset += assumed_bit_size<T>;
        }

        for (size_t i = (offset + word_size - 1) / word_size; i < m_data.size(); ++i)
            m_data[i] = 0;
    }

    // Casts & parts extraction
    template<NotBuiltInUFixedInt T>
    constexpr explicit operator T() const
    {
        T result;
        StorageOperations::copy(m_data, result.m_data);
        return result;
    }

    template<BuiltInUFixedInt T>
    requires(sizeof(T) <= sizeof(NativeWord)) constexpr explicit operator T() const
    {
        return m_data[0];
    }

    template<BuiltInUFixedInt T>
    requires(sizeof(T) == sizeof(DoubleWord)) constexpr explicit operator T() const
    {
        return (static_cast<DoubleWord>(m_data[1]) << word_size) + m_data[0];
    }

    constexpr UFixedBigIntPart low() const
    requires(static_size % 2 == 0)
    {
        if constexpr (part_size == 1) {
            return m_data[0];
        } else if constexpr (IsSame<UFixedBigIntPart, DoubleWord>) {
            return m_data[0] + (static_cast<DoubleWord>(m_data[1]) << word_size);
        } else {
            UFixedBigInt<part_size * word_size> result;
            StorageOperations::copy(m_data, result.m_data);
            return result;
        }
    }

    constexpr UFixedBigIntPart high() const
    requires(static_size % 2 == 0)
    {
        if constexpr (part_size == 1) {
            return m_data[part_size];
        } else if constexpr (IsSame<UFixedBigIntPart, DoubleWord>) {
            return m_data[part_size] + (static_cast<DoubleWord>(m_data[part_size + 1]) << word_size);
        } else {
            UFixedBigInt<part_size * word_size> result;
            StorageOperations::copy(m_data, result.m_data, part_size);
            return result;
        }
    }

    Bytes bytes()
    {
        return Bytes(reinterpret_cast<u8*>(this), sizeof(Storage));
    }

    ReadonlyBytes bytes() const
    {
        return ReadonlyBytes(reinterpret_cast<u8 const*>(this), sizeof(Storage));
    }

    constexpr UnsignedStorageSpan span()
    {
        return { m_data.data(), static_size };
    }

    constexpr UnsignedStorageReadonlySpan span() const
    {
        return { m_data.data(), static_size };
    }

    // Binary utils
    constexpr size_t popcnt() const
    {
        size_t result = 0;
        for (size_t i = 0; i < m_data.size(); ++i)
            result += popcount(m_data[i]);
        return result;
    }

    constexpr size_t ctz() const
    {
        size_t result = 0;
        for (size_t i = 0; i < m_data.size(); ++i) {
            if (m_data[i]) {
                result += count_trailing_zeroes(m_data[i]);
                break;
            } else {
                result += word_size;
            }
        }
        return result;
    }

    constexpr size_t clz() const
    {
        size_t result = 0;
        for (size_t i = m_data.size(); i--;) {
            if (m_data[i]) {
                result += count_leading_zeroes(m_data[i]);
                break;
            } else {
                result += word_size;
            }
        }
        return result + bit_size - word_size * static_size;
    }

    // Comparisons
    constexpr bool operator!() const
    {
        bool result = true;
        for (size_t i = 0; i < m_data.size(); ++i)
            result &= !m_data[i];
        return result;
    }

    constexpr explicit operator bool() const
    {
        bool result = false;
        for (size_t i = 0; i < m_data.size(); ++i)
            result |= m_data[i];
        return result;
    }

    constexpr bool operator==(UFixedInt auto const& other) const
    {
        return StorageOperations::compare(m_data, get_storage_of(other), true) == 0;
    }

    constexpr bool operator==(IntegerWrapper other) const
    {
        return StorageOperations::compare(m_data, get_storage_of(other), true) == 0;
    }

    constexpr int operator<=>(UFixedInt auto const& other) const
    {
        return StorageOperations::compare(m_data, get_storage_of(other), false);
    }

    constexpr int operator<=>(IntegerWrapper other) const
    {
        return StorageOperations::compare(m_data, get_storage_of(other), false);
    }

#define DEFINE_STANDARD_BINARY_OPERATOR(op, function)                        \
    constexpr auto operator op(UFixedInt auto const& other) const            \
    {                                                                        \
        auto func = [](auto&& a, auto&& b, auto&& c) { function(a, b, c); }; \
        return do_standard_binary_operation(other, func);                    \
    }                                                                        \
                                                                             \
    constexpr auto operator op(IntegerWrapper other) const                   \
    {                                                                        \
        auto func = [](auto&& a, auto&& b, auto&& c) { function(a, b, c); }; \
        return do_standard_binary_operation(other, func);                    \
    }

#define DEFINE_STANDARD_COMPOUND_ASSIGNMENT(op, function)                    \
    constexpr auto& operator op(UFixedInt auto const& other)                 \
    {                                                                        \
        auto func = [](auto&& a, auto&& b, auto&& c) { function(a, b, c); }; \
        do_standard_compound_assignment(other, func);                        \
        return *this;                                                        \
    }                                                                        \
                                                                             \
    constexpr auto& operator op(IntegerWrapper other)                        \
    {                                                                        \
        auto func = [](auto&& a, auto&& b, auto&& c) { function(a, b, c); }; \
        do_standard_compound_assignment(other, func);                        \
        return *this;                                                        \
    }

    // Binary operators
    DEFINE_STANDARD_BINARY_OPERATOR(^, StorageOperations::compute_bitwise<StorageOperations::Bitwise::XOR>)
    DEFINE_STANDARD_BINARY_OPERATOR(&, StorageOperations::compute_bitwise<StorageOperations::Bitwise::AND>)
    DEFINE_STANDARD_BINARY_OPERATOR(|, StorageOperations::compute_bitwise<StorageOperations::Bitwise::OR>)
    DEFINE_STANDARD_COMPOUND_ASSIGNMENT(^=, StorageOperations::compute_inplace_bitwise<StorageOperations::Bitwise::XOR>)
    DEFINE_STANDARD_COMPOUND_ASSIGNMENT(&=, StorageOperations::compute_inplace_bitwise<StorageOperations::Bitwise::AND>)
    DEFINE_STANDARD_COMPOUND_ASSIGNMENT(|=, StorageOperations::compute_inplace_bitwise<StorageOperations::Bitwise::OR>)

    constexpr auto operator~() const
    {
        UFixedBigInt<bit_size> result;
        StorageOperations::compute_bitwise<StorageOperations::Bitwise::INVERT>(m_data, m_data, result.m_data);
        return result;
    }

    constexpr auto operator<<(size_t shift) const
    {
        UFixedBigInt<bit_size> result;
        StorageOperations::shift_left(m_data, shift, result.m_data);
        return result;
    }

    constexpr auto& operator<<=(size_t shift)
    {
        StorageOperations::shift_left(m_data, shift, m_data);
        return *this;
    }

    constexpr auto operator>>(size_t shift) const
    {
        UFixedBigInt<bit_size> result;
        StorageOperations::shift_right(m_data, shift, result.m_data);
        return result;
    }

    constexpr auto& operator>>=(size_t shift)
    {
        StorageOperations::shift_right(m_data, shift, m_data);
        return *this;
    }

    // Arithmetic
    template<UFixedInt T>
    constexpr auto addc(T const& other, bool& carry) const
    {
        UFixedBigInt<max(bit_size, assumed_bit_size<T>)> result;
        carry = StorageOperations::add<false>(m_data, get_storage_of(other), result.m_data, carry);
        return result;
    }

    template<UFixedInt T>
    constexpr auto subc(T const& other, bool& borrow) const
    {
        UFixedBigInt<max(bit_size, assumed_bit_size<T>)> result;
        borrow = StorageOperations::add<true>(m_data, get_storage_of(other), result.m_data, borrow);
        return result;
    }

    DEFINE_STANDARD_BINARY_OPERATOR(+, StorageOperations::add<false>)
    DEFINE_STANDARD_BINARY_OPERATOR(-, StorageOperations::add<true>)
    DEFINE_STANDARD_COMPOUND_ASSIGNMENT(+=, StorageOperations::add<false>)
    DEFINE_STANDARD_COMPOUND_ASSIGNMENT(-=, StorageOperations::add<true>)

    constexpr auto& operator++()
    {
        StorageOperations::increment<false>(m_data);
        return *this;
    }

    constexpr auto& operator--()
    {
        StorageOperations::increment<true>(m_data);
        return *this;
    }

    constexpr auto operator++(int)
    {
        UFixedBigInt<bit_size> result = *this;
        StorageOperations::increment<false>(m_data);
        return result;
    }

    constexpr auto operator--(int)
    {
        UFixedBigInt<bit_size> result = *this;
        StorageOperations::increment<true>(m_data);
        return result;
    }

    DEFINE_STANDARD_BINARY_OPERATOR(*, mul_internal)

    constexpr auto& operator*=(UFixedInt auto const& other) { return *this = *this * other; }
    constexpr auto& operator*=(IntegerWrapper const& other) { return *this = *this * other; }

    template<UFixedInt T>
    constexpr auto wide_multiply(T const& other) const
    {
        UFixedBigInt<bit_size + assumed_bit_size<T>> result;
        mul_internal(m_data, get_storage_of(other), result.m_data);
        return result;
    }

    template<NotBuiltInUFixedInt T>
    constexpr UFixedBigInt<bit_size> div_mod(T const& divisor, T& remainder) const
    {
        UFixedBigInt<bit_size> quotient;
        UFixedBigInt<assumed_bit_size<T>> resulting_remainder;
        div_mod_internal<bit_size, assumed_bit_size<T>, true>(m_data, get_storage_of(divisor), get_storage_of(quotient), get_storage_of(resulting_remainder));
        remainder = resulting_remainder;
        return quotient;
    }

    template<UFixedInt T>
    constexpr auto operator/(T const& other) const
    {
        UFixedBigInt<bit_size> quotient;
        StaticStorage<false, assumed_bit_size<T>> remainder; // unused
        div_mod_internal<bit_size, assumed_bit_size<T>, false>(m_data, get_storage_of(other), get_storage_of(quotient), remainder);
        return quotient;
    }

    template<UFixedInt T>
    constexpr auto operator%(T const& other) const
    {
        StaticStorage<false, bit_size> quotient; // unused
        UFixedBigInt<assumed_bit_size<T>> remainder;
        div_mod_internal<bit_size, assumed_bit_size<T>, true>(m_data, get_storage_of(other), quotient, get_storage_of(remainder));
        return remainder;
    }

    constexpr auto operator/(IntegerWrapper const& other) const { return *this / static_cast<UFixedBigInt<32>>(other); }
    constexpr auto operator%(IntegerWrapper const& other) const { return *this % static_cast<UFixedBigInt<32>>(other); }

    template<UFixedInt T>
    constexpr auto& operator/=(T const& other) { return *this = *this / other; }
    constexpr auto& operator/=(IntegerWrapper const& other) { return *this = *this / other; }

    template<Unsigned U>
    constexpr auto& operator%=(U const& other) { return *this = *this % other; }
    constexpr auto& operator%=(IntegerWrapper const& other) { return *this = *this % other; }

    // Note: If there ever be need for non side-channel proof sqrt/pow/pow_mod of UFixedBigInt, you
    //       can restore them from Git history.

#undef DEFINE_STANDARD_BINARY_OPERATOR
#undef DEFINE_STANDARD_COMPOUND_ASSIGNMENT

    // These functions are intended to be used in LibCrypto for equality checks without branching.
    constexpr bool is_zero_constant_time() const
    {
        NativeWord fold = 0;
        for (size_t i = 0; i < m_data.size(); ++i)
            taint_for_optimizer(fold |= m_data[i]);
        return !fold;
    }

    constexpr bool is_equal_to_constant_time(UFixedBigInt<bit_size> other) const
    {
        NativeWord fold = 0;
        for (size_t i = 0; i < m_data.size(); ++i)
            taint_for_optimizer(fold |= m_data[i] ^ other.m_data[i]);
        return !fold;
    }

private:
    template<ConvertibleToUFixedInt T, typename Function>
    constexpr auto do_standard_binary_operation(T const& other, Function function) const
    {
        UFixedBigInt<max(bit_size, assumed_bit_size<T>)> result;
        function(m_data, get_storage_of(other), result.m_data);
        return result;
    }

    template<ConvertibleToUFixedInt T, typename Function>
    constexpr void do_standard_compound_assignment(T const& other, Function function)
    {
        static_assert(bit_size >= assumed_bit_size<T>, "Requested operation requires integer size to be expanded.");
        function(m_data, get_storage_of(other), m_data);
    }

    template<size_t other_bit_size, typename OtherStorage>
    friend class UFixedBigInt;

    friend constexpr auto& get_storage_of<bit_size>(UFixedBigInt<bit_size>&);
    friend constexpr auto& get_storage_of<bit_size>(UFixedBigInt<bit_size> const&);

    Storage m_data;
};

// FIXME: There is a bug in LLVM (https://github.com/llvm/llvm-project/issues/59783) which doesn't
//        allow to use the following comparisons.
bool operator==(BuiltInUFixedInt auto const& a, NotBuiltInUFixedInt auto const& b) { return b.operator==(a); }
int operator<=>(BuiltInUFixedInt auto const& a, NotBuiltInUFixedInt auto const& b) { return -b.operator<=>(a); }
bool operator==(IntegerWrapper const& a, NotBuiltInUFixedInt auto const& b) { return b.operator==(a); }
int operator<=>(IntegerWrapper const& a, NotBuiltInUFixedInt auto const& b) { return -b.operator<=>(a); }
}

using Detail::UFixedBigInt;

template<size_t bit_size>
constexpr inline bool IsUnsigned<UFixedBigInt<bit_size>> = true;
template<size_t bit_size>
constexpr inline bool IsSigned<UFixedBigInt<bit_size>> = false;

template<size_t bit_size>
struct NumericLimits<UFixedBigInt<bit_size>> {
    using T = UFixedBigInt<bit_size>;

    static constexpr T min() { return T {}; }
    static constexpr T max() { return --T {}; }
    static constexpr bool is_signed() { return false; }
};

// ===== Formatting =====
// FIXME: This does not work for size != 2 ** x
template<Detail::NotBuiltInUFixedInt T>
struct Formatter<T> : StandardFormatter {
    Formatter() = default;
    explicit Formatter(StandardFormatter formatter)
        : StandardFormatter(formatter)
    {
    }

    ErrorOr<void> format(FormatBuilder& builder, T const& value)
    {
        using U = decltype(value.low());

        if (m_precision.has_value())
            VERIFY_NOT_REACHED();

        if (m_mode == Mode::Pointer) {
            // these are way to big for a pointer
            VERIFY_NOT_REACHED();
        }
        if (m_mode == Mode::Default)
            m_mode = Mode::Hexadecimal;

        if (!value.high()) {
            Formatter<U> formatter { *this };
            return formatter.format(builder, value.low());
        }

        u8 base = 0;
        if (m_mode == Mode::Binary) {
            base = 2;
        } else if (m_mode == Mode::BinaryUppercase) {
            base = 2;
        } else if (m_mode == Mode::Octal) {
            TODO();
        } else if (m_mode == Mode::Decimal) {
            TODO();
        } else if (m_mode == Mode::Hexadecimal) {
            base = 16;
        } else if (m_mode == Mode::HexadecimalUppercase) {
            base = 16;
        } else {
            VERIFY_NOT_REACHED();
        }
        ssize_t width = m_width.value_or(0);
        ssize_t lower_length = ceil_div(Detail::assumed_bit_size<U>, (ssize_t)base);
        Formatter<U> formatter { *this };
        formatter.m_width = max(width - lower_length, (ssize_t)0);
        TRY(formatter.format(builder, value.high()));
        TRY(builder.put_literal("'"sv));
        formatter.m_zero_pad = true;
        formatter.m_alternative_form = false;
        formatter.m_width = lower_length;
        TRY(formatter.format(builder, value.low()));
        return {};
    }
};
}

// these sizes should suffice for most usecases
using u128 = AK::UFixedBigInt<128>;
using u256 = AK::UFixedBigInt<256>;
using u512 = AK::UFixedBigInt<512>;
using u1024 = AK::UFixedBigInt<1024>;
using u2048 = AK::UFixedBigInt<2048>;
using u4096 = AK::UFixedBigInt<4096>;