summaryrefslogtreecommitdiff
path: root/AK/RedBlackTree.h
blob: 11bc1413593095788f96ac3625e53ba279e21450 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Concepts.h>
#include <AK/Error.h>
#include <AK/Noncopyable.h>
#include <AK/kmalloc.h>

namespace AK {

template<Integral K>
class BaseRedBlackTree {
    AK_MAKE_NONCOPYABLE(BaseRedBlackTree);
    AK_MAKE_NONMOVABLE(BaseRedBlackTree);

public:
    [[nodiscard]] size_t size() const { return m_size; }
    [[nodiscard]] bool is_empty() const { return m_size == 0; }

    enum class Color : bool {
        Red,
        Black
    };
    struct Node {
        Node* left_child { nullptr };
        Node* right_child { nullptr };
        Node* parent { nullptr };

        Color color { Color::Red };

        K key;

        Node(K key)
            : key(key)
        {
        }
        Node()
        {
        }
        virtual ~Node() {};
    };

protected:
    BaseRedBlackTree() = default; // These are protected to ensure no one instantiates the leaky base red black tree directly
    virtual ~BaseRedBlackTree() = default;

    void rotate_left(Node* subtree_root)
    {
        VERIFY(subtree_root);
        auto* pivot = subtree_root->right_child;
        VERIFY(pivot);
        auto* parent = subtree_root->parent;

        // stage 1 - subtree_root's right child is now pivot's left child
        subtree_root->right_child = pivot->left_child;
        if (subtree_root->right_child)
            subtree_root->right_child->parent = subtree_root;

        // stage 2 - pivot's left child is now subtree_root
        pivot->left_child = subtree_root;
        subtree_root->parent = pivot;

        // stage 3 - update pivot's parent
        pivot->parent = parent;
        if (!parent) { // new root
            m_root = pivot;
        } else if (parent->left_child == subtree_root) { // we are the left child
            parent->left_child = pivot;
        } else { // we are the right child
            parent->right_child = pivot;
        }
    }

    void rotate_right(Node* subtree_root)
    {
        VERIFY(subtree_root);
        auto* pivot = subtree_root->left_child;
        VERIFY(pivot);
        auto* parent = subtree_root->parent;

        // stage 1 - subtree_root's left child is now pivot's right child
        subtree_root->left_child = pivot->right_child;
        if (subtree_root->left_child)
            subtree_root->left_child->parent = subtree_root;

        // stage 2 - pivot's right child is now subtree_root
        pivot->right_child = subtree_root;
        subtree_root->parent = pivot;

        // stage 3 - update pivot's parent
        pivot->parent = parent;
        if (!parent) { // new root
            m_root = pivot;
        } else if (parent->left_child == subtree_root) { // we are the left child
            parent->left_child = pivot;
        } else { // we are the right child
            parent->right_child = pivot;
        }
    }

    static Node* find(Node* node, K key)
    {
        while (node && node->key != key) {
            if (key < node->key) {
                node = node->left_child;
            } else {
                node = node->right_child;
            }
        }
        return node;
    }

    static Node* find_largest_not_above(Node* node, K key)
    {
        Node* candidate = nullptr;
        while (node) {
            if (key == node->key)
                return node;
            if (key < node->key) {
                node = node->left_child;
            } else {
                candidate = node;
                node = node->right_child;
            }
        }
        return candidate;
    }

    static Node* find_smallest_not_below(Node* node, K key)
    {
        Node* candidate = nullptr;
        while (node) {
            if (node->key == key)
                return node;

            if (node->key <= key) {
                node = node->right_child;
            } else {
                candidate = node;
                node = node->left_child;
            }
        }
        return candidate;
    }

    void insert(Node* node)
    {
        VERIFY(node);
        Node* parent = nullptr;
        Node* temp = m_root;
        while (temp) {
            parent = temp;
            if (node->key < temp->key)
                temp = temp->left_child;
            else
                temp = temp->right_child;
        }
        if (!parent) { // new root
            node->color = Color::Black;
            m_root = node;
            m_size = 1;
            m_minimum = node;
            return;
        }
        if (node->key < parent->key) // we are the left child
            parent->left_child = node;
        else // we are the right child
            parent->right_child = node;
        node->parent = parent;

        if (node->parent->parent) // no fixups to be done for a height <= 2 tree
            insert_fixups(node);

        m_size++;
        if (m_minimum->left_child == node)
            m_minimum = node;
    }

    void insert_fixups(Node* node)
    {
        VERIFY(node && node->color == Color::Red);
        while (node->parent && node->parent->color == Color::Red) {
            auto* grand_parent = node->parent->parent;
            if (grand_parent->right_child == node->parent) {
                auto* uncle = grand_parent->left_child;
                if (uncle && uncle->color == Color::Red) {
                    node->parent->color = Color::Black;
                    uncle->color = Color::Black;
                    grand_parent->color = Color::Red;
                    node = grand_parent;
                } else {
                    if (node->parent->left_child == node) {
                        node = node->parent;
                        rotate_right(node);
                    }
                    node->parent->color = Color::Black;
                    grand_parent->color = Color::Red;
                    rotate_left(grand_parent);
                }
            } else {
                auto* uncle = grand_parent->right_child;
                if (uncle && uncle->color == Color::Red) {
                    node->parent->color = Color::Black;
                    uncle->color = Color::Black;
                    grand_parent->color = Color::Red;
                    node = grand_parent;
                } else {
                    if (node->parent->right_child == node) {
                        node = node->parent;
                        rotate_left(node);
                    }
                    node->parent->color = Color::Black;
                    grand_parent->color = Color::Red;
                    rotate_right(grand_parent);
                }
            }
        }
        m_root->color = Color::Black; // the root should always be black
    }

    void remove(Node* node)
    {
        VERIFY(node);

        // special case: deleting the only node
        if (m_size == 1) {
            m_root = nullptr;
            m_minimum = nullptr;
            m_size = 0;
            return;
        }

        if (m_minimum == node)
            m_minimum = successor(node);

        // removal assumes the node has 0 or 1 child, so if we have 2, relink with the successor first (by definition the successor has no left child)
        // FIXME: since we dont know how a value is represented in the node, we can't simply swap the values and keys, and instead we relink the nodes
        //  in place, this is quite a bit more expensive, as well as much less readable, is there a better way?
        if (node->left_child && node->right_child) {
            auto* successor_node = successor(node); // this is always non-null as all nodes besides the maximum node have a successor, and the maximum node has no right child
            auto neighbor_swap = successor_node->parent == node;
            node->left_child->parent = successor_node;
            if (!neighbor_swap)
                node->right_child->parent = successor_node;
            if (node->parent) {
                if (node->parent->left_child == node) {
                    node->parent->left_child = successor_node;
                } else {
                    node->parent->right_child = successor_node;
                }
            } else {
                m_root = successor_node;
            }
            if (successor_node->right_child)
                successor_node->right_child->parent = node;
            if (neighbor_swap) {
                successor_node->parent = node->parent;
                node->parent = successor_node;
            } else {
                if (successor_node->parent) {
                    if (successor_node->parent->left_child == successor_node) {
                        successor_node->parent->left_child = node;
                    } else {
                        successor_node->parent->right_child = node;
                    }
                } else {
                    m_root = node;
                }
                swap(node->parent, successor_node->parent);
            }
            swap(node->left_child, successor_node->left_child);
            if (neighbor_swap) {
                node->right_child = successor_node->right_child;
                successor_node->right_child = node;
            } else {
                swap(node->right_child, successor_node->right_child);
            }
            swap(node->color, successor_node->color);
        }

        auto* child = node->left_child ?: node->right_child;

        if (child)
            child->parent = node->parent;
        if (node->parent) {
            if (node->parent->left_child == node)
                node->parent->left_child = child;
            else
                node->parent->right_child = child;
        } else {
            m_root = child;
        }

        // if the node is red then child must be black, and just replacing the node with its child should result in a valid tree (no change to black height)
        if (node->color != Color::Red)
            remove_fixups(child, node->parent);

        m_size--;
    }

    // We maintain parent as a separate argument since node might be null
    void remove_fixups(Node* node, Node* parent)
    {
        while (node != m_root && (!node || node->color == Color::Black)) {
            if (parent->left_child == node) {
                auto* sibling = parent->right_child;
                if (sibling->color == Color::Red) {
                    sibling->color = Color::Black;
                    parent->color = Color::Red;
                    rotate_left(parent);
                    sibling = parent->right_child;
                }
                if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
                    sibling->color = Color::Red;
                    node = parent;
                } else {
                    if (!sibling->right_child || sibling->right_child->color == Color::Black) {
                        sibling->left_child->color = Color::Black; // null check?
                        sibling->color = Color::Red;
                        rotate_right(sibling);
                        sibling = parent->right_child;
                    }
                    sibling->color = parent->color;
                    parent->color = Color::Black;
                    sibling->right_child->color = Color::Black; // null check?
                    rotate_left(parent);
                    node = m_root; // fixed
                }
            } else {
                auto* sibling = parent->left_child;
                if (sibling->color == Color::Red) {
                    sibling->color = Color::Black;
                    parent->color = Color::Red;
                    rotate_right(parent);
                    sibling = parent->left_child;
                }
                if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
                    sibling->color = Color::Red;
                    node = parent;
                } else {
                    if (!sibling->left_child || sibling->left_child->color == Color::Black) {
                        sibling->right_child->color = Color::Black; // null check?
                        sibling->color = Color::Red;
                        rotate_left(sibling);
                        sibling = parent->left_child;
                    }
                    sibling->color = parent->color;
                    parent->color = Color::Black;
                    sibling->left_child->color = Color::Black; // null check?
                    rotate_right(parent);
                    node = m_root; // fixed
                }
            }
            parent = node->parent;
        }
        node->color = Color::Black; // by this point node can't be null
    }

    static Node* successor(Node* node)
    {
        VERIFY(node);
        if (node->right_child) {
            node = node->right_child;
            while (node->left_child)
                node = node->left_child;
            return node;
        }
        auto temp = node->parent;
        while (temp && node == temp->right_child) {
            node = temp;
            temp = temp->parent;
        }
        return temp;
    }

    static Node* predecessor(Node* node)
    {
        VERIFY(node);
        if (node->left_child) {
            node = node->left_child;
            while (node->right_child)
                node = node->right_child;
            return node;
        }
        auto temp = node->parent;
        while (temp && node == temp->left_child) {
            node = temp;
            temp = temp->parent;
        }
        return temp;
    }

    Node* m_root { nullptr };
    size_t m_size { 0 };
    Node* m_minimum { nullptr }; // maintained for O(1) begin()
};

template<typename TreeType, typename ElementType>
class RedBlackTreeIterator {
public:
    RedBlackTreeIterator() = default;
    bool operator!=(RedBlackTreeIterator const& other) const { return m_node != other.m_node; }
    RedBlackTreeIterator& operator++()
    {
        if (!m_node)
            return *this;
        m_prev = m_node;
        // the complexity is O(logn) for each successor call, but the total complexity for all elements comes out to O(n), meaning the amortized cost for a single call is O(1)
        m_node = static_cast<typename TreeType::Node*>(TreeType::successor(m_node));
        return *this;
    }
    RedBlackTreeIterator& operator--()
    {
        if (!m_prev)
            return *this;
        m_node = m_prev;
        m_prev = static_cast<typename TreeType::Node*>(TreeType::predecessor(m_prev));
        return *this;
    }
    ElementType& operator*() { return m_node->value; }
    ElementType* operator->() { return &m_node->value; }
    [[nodiscard]] bool is_end() const { return !m_node; }
    [[nodiscard]] bool is_begin() const { return !m_prev; }

    [[nodiscard]] auto key() const { return m_node->key; }

private:
    friend TreeType;
    explicit RedBlackTreeIterator(typename TreeType::Node* node, typename TreeType::Node* prev = nullptr)
        : m_node(node)
        , m_prev(prev)
    {
    }
    typename TreeType::Node* m_node { nullptr };
    typename TreeType::Node* m_prev { nullptr };
};

template<Integral K, typename V>
class RedBlackTree final : public BaseRedBlackTree<K> {
public:
    RedBlackTree() = default;
    virtual ~RedBlackTree() override
    {
        clear();
    }

    using BaseTree = BaseRedBlackTree<K>;

    [[nodiscard]] V* find(K key)
    {
        auto* node = static_cast<Node*>(BaseTree::find(this->m_root, key));
        if (!node)
            return nullptr;
        return &node->value;
    }

    [[nodiscard]] V* find_largest_not_above(K key)
    {
        auto* node = static_cast<Node*>(BaseTree::find_largest_not_above(this->m_root, key));
        if (!node)
            return nullptr;
        return &node->value;
    }

    [[nodiscard]] V* find_smallest_not_below(K key)
    {
        auto* node = static_cast<Node*>(BaseTree::find_smallest_not_below(this->m_root, key));
        if (!node)
            return nullptr;
        return &node->value;
    }

    ErrorOr<void> try_insert(K key, V const& value)
    {
        return try_insert(key, V(value));
    }

    void insert(K key, V const& value)
    {
        MUST(try_insert(key, value));
    }

    ErrorOr<void> try_insert(K key, V&& value)
    {
        auto* node = new (nothrow) Node(key, move(value));
        if (!node)
            return Error::from_errno(ENOMEM);
        BaseTree::insert(node);
        return {};
    }

    void insert(K key, V&& value)
    {
        MUST(try_insert(key, move(value)));
    }

    using Iterator = RedBlackTreeIterator<RedBlackTree, V>;
    friend Iterator;
    Iterator begin() { return Iterator(static_cast<Node*>(this->m_minimum)); }
    Iterator end() { return {}; }
    Iterator begin_from(K key) { return Iterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }

    using ConstIterator = RedBlackTreeIterator<const RedBlackTree, V const>;
    friend ConstIterator;
    ConstIterator begin() const { return ConstIterator(static_cast<Node*>(this->m_minimum)); }
    ConstIterator end() const { return {}; }
    ConstIterator begin_from(K key) const { return ConstIterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }

    ConstIterator find_largest_not_above_iterator(K key) const
    {
        auto node = static_cast<Node*>(BaseTree::find_largest_not_above(this->m_root, key));
        if (!node)
            return end();
        return ConstIterator(node, static_cast<Node*>(BaseTree::predecessor(node)));
    }

    ConstIterator find_smallest_not_below_iterator(K key) const
    {
        auto node = static_cast<Node*>(BaseTree::find_smallest_not_below(this->m_root, key));
        if (!node)
            return end();
        return ConstIterator(node, static_cast<Node*>(BaseTree::predecessor(node)));
    }

    V unsafe_remove(K key)
    {
        auto* node = BaseTree::find(this->m_root, key);
        VERIFY(node);

        BaseTree::remove(node);

        V temp = move(static_cast<Node*>(node)->value);

        node->right_child = nullptr;
        node->left_child = nullptr;
        delete node;

        return temp;
    }

    bool remove(K key)
    {
        auto* node = BaseTree::find(this->m_root, key);
        if (!node)
            return false;

        BaseTree::remove(node);

        node->right_child = nullptr;
        node->left_child = nullptr;
        delete node;

        return true;
    }

    void clear()
    {
        delete this->m_root;
        this->m_root = nullptr;
        this->m_minimum = nullptr;
        this->m_size = 0;
    }

private:
    struct Node : BaseRedBlackTree<K>::Node {

        V value;

        Node(K key, V value)
            : BaseRedBlackTree<K>::Node(key)
            , value(move(value))
        {
        }

        ~Node()
        {
            delete this->left_child;
            delete this->right_child;
        }
    };
};

}

#if USING_AK_GLOBALLY
using AK::RedBlackTree;
#endif