1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/*
* Copyright (c) 2020, Srimanta Barua <srimanta.barua1@gmail.com>
* Copyright (c) 2023, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibGfx/Font/PathRasterizer.h>
namespace Gfx {
PathRasterizer::PathRasterizer(Gfx::IntSize size)
: m_size(size)
{
m_data.resize(m_size.area());
for (int i = 0; i < m_size.area(); i++)
m_data[i] = 0.f;
}
void PathRasterizer::draw_path(Gfx::Path& path)
{
for (auto& line : path.split_lines())
draw_line(line.a(), line.b());
}
RefPtr<Gfx::Bitmap> PathRasterizer::accumulate()
{
auto bitmap_or_error = Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, m_size);
if (bitmap_or_error.is_error())
return {};
auto bitmap = bitmap_or_error.release_value_but_fixme_should_propagate_errors();
Color base_color = Color::from_rgb(0xffffff);
for (int y = 0; y < m_size.height(); y++) {
float accumulator = 0.f;
for (int x = 0; x < m_size.width(); x++) {
accumulator += m_data[y * m_size.width() + x];
float value = AK::min(AK::abs(accumulator), 1.f);
u8 alpha = value * 255.f;
bitmap->set_pixel(x, y, base_color.with_alpha(alpha));
}
}
return bitmap;
}
void PathRasterizer::draw_line(Gfx::FloatPoint p0, Gfx::FloatPoint p1)
{
// FIXME: Shift x and y according to dy/dx
if (p0.x() < 0.f)
p0.set_x(roundf(p0.x()));
if (p0.y() < 0.f)
p0.set_y(roundf(p0.y()));
if (p1.x() < 0.f)
p1.set_x(roundf(p1.x()));
if (p1.y() < 0.f)
p1.set_y(roundf(p1.y()));
if (p0.x() < 0.f || p0.y() < 0.f || p0.x() > m_size.width() || p0.y() > m_size.height()) {
dbgln("!P0({},{})", p0.x(), p0.y());
return;
}
if (p1.x() < 0.f || p1.y() < 0.f || p1.x() > m_size.width() || p1.y() > m_size.height()) {
dbgln("!P1({},{})", p1.x(), p1.y());
return;
}
// If we're on the same Y, there's no need to draw
if (p0.y() == p1.y())
return;
float direction = -1.f;
if (p1.y() < p0.y()) {
direction = 1.f;
AK::swap(p0, p1);
}
float const dxdy = (p1.x() - p0.x()) / (p1.y() - p0.y());
float const dydx = AK::abs(1.f / dxdy);
u32 y0 = floorf(p0.y());
u32 y1 = ceilf(p1.y());
float x_cur = p0.x();
for (u32 y = y0; y < y1; y++) {
u32 line_offset = m_size.width() * y;
float dy = AK::min(y + 1.f, p1.y()) - AK::max(static_cast<float>(y), p0.y());
float directed_dy = dy * direction;
float x_next = x_cur + dy * dxdy;
x_next = AK::max(x_next, 0.f);
float x0 = x_cur;
float x1 = x_next;
if (x1 < x0) {
x1 = x_cur;
x0 = x_next;
}
float x0_floor = floorf(x0);
float x1_ceil = ceilf(x1);
u32 x0_floor_i = x0_floor;
if (x1_ceil <= x0_floor + 1.f) {
// If x0 and x1 are within the same pixel, then area to the right is (1 - (mid(x0, x1) - x0_floor)) * dy
float area = .5f * (x0 + x1) - x0_floor;
m_data[line_offset + x0_floor_i] += directed_dy * (1.f - area);
if (x0_floor_i + 1 < static_cast<u32>(m_size.width()))
m_data[line_offset + x0_floor_i + 1] += directed_dy * area;
} else {
float x0_right = 1.f - (x0 - x0_floor);
u32 x1_floor_i = floorf(x1);
float area_upto_here = .5f * x0_right * x0_right * dydx;
m_data[line_offset + x0_floor_i] += direction * area_upto_here;
for (u32 x = x0_floor_i + 1; x < x1_floor_i; x++) {
m_data[line_offset + x] += direction * dydx;
area_upto_here += dydx;
}
float remaining_area = dy - area_upto_here;
m_data[line_offset + x1_floor_i] += direction * remaining_area;
}
x_cur = x_next;
}
}
}
|