summaryrefslogtreecommitdiff
path: root/src/message.rs
blob: 11cad2b387128d49baa2a9285328d53fd2bcf029 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
// Copyright 2017 int08h LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::io::{Cursor, Read, Write};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::iter::once;
use std::collections::HashMap;

use tag::Tag;
use error::Error;

///
/// A Roughtime protocol message; a map of u32 tags to arbitrary byte-strings.
///
#[derive(Debug, Clone)]
pub struct RtMessage {
    tags: Vec<Tag>,
    values: Vec<Vec<u8>>,
}

impl RtMessage {
    /// Construct a new RtMessage
    ///
    /// ## Arguments
    ///
    /// * `num_fields` - Reserve space for this many fields.
    ///
    pub fn new(num_fields: u32) -> Self {
        RtMessage {
            tags: Vec::with_capacity(num_fields as usize),
            values: Vec::with_capacity(num_fields as usize),
        }
    }

    pub fn from_bytes(bytes: &[u8]) -> Result<Self, Error> {
        let mut msg = Cursor::new(bytes);

        let num_tags = msg.read_u32::<LittleEndian>()?;
        let mut rt_msg = RtMessage::new(num_tags);

        if num_tags == 1 {
            let pos = msg.position() as usize;
            let tag = Tag::from_wire(&bytes[pos..pos + 4])?;
            msg.set_position((pos + 4) as u64);

            let mut value = Vec::new();

            msg.read_to_end(&mut value).unwrap();
            rt_msg.add_field(tag, &value)?;
            return Ok(rt_msg);
        }

        let mut offsets = Vec::with_capacity((num_tags - 1) as usize);
        let mut tags = Vec::with_capacity(num_tags as usize);

        for _ in 0..num_tags - 1 {
            let offset = msg.read_u32::<LittleEndian>()?;
            if offset % 4 != 0 {
                panic!("Invalid offset {:?} in message {:?}", offset, bytes);
            }
            offsets.push(offset as usize);
        }

        let mut buf = [0; 4];
        for _ in 0..num_tags {
            msg.read_exact(&mut buf).unwrap();
            let tag = Tag::from_wire(&buf)?;

            if let Some(last_tag) = tags.last() {
                if tag <= *last_tag {
                    return Err(Error::TagNotStrictlyIncreasing(tag));
                }
            }
            tags.push(tag);
        }

        // All offsets are relative to the end of the header,
        // which is our current position
        let header_end = msg.position() as usize;
        // Compute the end of the last value,
        // as an offset from the end of the header
        let msg_end = bytes.len() - header_end;

        assert_eq!(offsets.len(), tags.len() - 1);

        for (tag, (value_start, value_end)) in tags.into_iter().zip(
            once(&0)
                .chain(offsets.iter())
                .zip(offsets.iter().chain(once(&msg_end))),
        ) {
            let value = bytes[(header_end + value_start)..(header_end + value_end)].to_vec();
            rt_msg.add_field(tag, &value)?;
        }
        Ok(rt_msg)
    }

    /// Add a field to this `RtMessage`
    ///
    /// ## Arguments
    ///
    /// * `tag` - The [`Tag`](enum.Tag.html) to add. Tags must be added in **strictly
    ///   increasing order**, violating this will result in a
    ///   [`Error::TagNotStrictlyIncreasing`](enum.Error.html).
    ///
    /// * `value` - Value for the tag.
    ///
    pub fn add_field(&mut self, tag: Tag, value: &[u8]) -> Result<(), Error> {
        if let Some(last_tag) = self.tags.last() {
            if tag <= *last_tag {
                return Err(Error::TagNotStrictlyIncreasing(tag));
            }
        }

        self.tags.push(tag);
        self.values.push(value.to_vec());

        Ok(())
    }

    /// Returns the number of tag/value pairs in the message
    pub fn num_fields(&self) -> u32 {
        self.tags.len() as u32
    }

    pub fn tags(&self) -> &[Tag] {
        &self.tags
    }

    pub fn values(&self) -> &[Vec<u8>] {
        &self.values
    }

    pub fn into_hash_map(self) -> HashMap<Tag, Vec<u8>> {
        self.tags.into_iter().zip(self.values.into_iter()).collect()
    }

    /// Encode this message into its on-the-wire representation.
    pub fn encode(&self) -> Result<Vec<u8>, Error> {
        let num_tags = self.tags.len();
        let mut out = Vec::with_capacity(self.encoded_size());

        // number of tags
        out.write_u32::<LittleEndian>(num_tags as u32)?;

        // offset(s) to values, IFF there are two or more tags
        if num_tags > 1 {
            let mut offset_sum = self.values[0].len();

            for val in &self.values[1..] {
                out.write_u32::<LittleEndian>(offset_sum as u32)?;
                offset_sum += val.len();
            }
        }

        // write tags
        for tag in &self.tags {
            out.write_all(tag.wire_value())?;
        }

        // write values
        for value in &self.values {
            out.write_all(value)?;
        }

        // check we wrote exactly what we expected
        assert_eq!(out.len(), self.encoded_size(), "unexpected length");

        Ok(out)
    }

    /// Returns the length in bytes of this message's on-the-wire representation.
    pub fn encoded_size(&self) -> usize {
        let num_tags = self.tags.len();
        let tags_size = 4 * num_tags;
        let offsets_size = if num_tags < 2 { 0 } else { 4 * (num_tags - 1) };
        let values_size: usize = self.values.iter().map(|v| v.len()).sum();

        4 + tags_size + offsets_size + values_size
    }

    /// Adds a PAD tag to the end of this message, with a length
    /// set such that the final encoded size of this message is 1KB
    ///
    /// If the encoded size of this message is already >= 1KB,
    /// this method does nothing
    pub fn pad_to_kilobyte(&mut self) {
        let size = self.encoded_size();
        if size >= 1024 {
            return;
        }

        let mut padding_needed = 1024 - size;
        if self.tags.len() == 1 {
            // If we currently only have one tag, adding a padding tag will cause
            // a 32-bit offset values to be written
            padding_needed -= 4;
        }
        padding_needed -= Tag::PAD.wire_value().len();
        let padding = vec![0; padding_needed];

        self.add_field(Tag::PAD, &padding).unwrap();

        assert_eq!(self.encoded_size(), 1024);
    }
}

#[cfg(test)]
mod test {
    use std::io::{Cursor, Read};
    use byteorder::{LittleEndian, ReadBytesExt};
    use message::*;
    use tag::Tag;

    #[test]
    fn empty_message_size() {
        let msg = RtMessage::new(0);

        assert_eq!(msg.num_fields(), 0);
        // Empty message is 4 bytes, a single num_tags value
        assert_eq!(msg.encoded_size(), 4);
    }

    #[test]
    fn single_field_message_size() {
        let mut msg = RtMessage::new(1);
        msg.add_field(Tag::NONC, "1234".as_bytes()).unwrap();

        assert_eq!(msg.num_fields(), 1);
        // Single tag message is 4 (num_tags) + 4 (NONC) + 4 (value)
        assert_eq!(msg.encoded_size(), 12);
    }

    #[test]
    fn two_field_message_size() {
        let mut msg = RtMessage::new(2);
        msg.add_field(Tag::NONC, "1234".as_bytes()).unwrap();
        msg.add_field(Tag::PAD, "abcd".as_bytes()).unwrap();

        assert_eq!(msg.num_fields(), 2);
        // Two tag message
        //   4 num_tags
        //   8 (NONC, PAD) tags
        //   4 PAD offset
        //   8 values
        assert_eq!(msg.encoded_size(), 24);
    }

    #[test]
    fn empty_message_encoding() {
        let msg = RtMessage::new(0);
        let mut encoded = Cursor::new(msg.encode().unwrap());

        assert_eq!(encoded.read_u32::<LittleEndian>().unwrap(), 0);
    }

    #[test]
    fn single_field_message_encoding() {
        let value = vec![b'a'; 64];
        let mut msg = RtMessage::new(1);

        msg.add_field(Tag::CERT, &value).unwrap();

        let mut encoded = Cursor::new(msg.encode().unwrap());

        // num tags
        assert_eq!(encoded.read_u32::<LittleEndian>().unwrap(), 1);

        // CERT tag
        let mut cert = [0u8; 4];
        encoded.read_exact(&mut cert).unwrap();
        assert_eq!(cert, Tag::CERT.wire_value());

        // CERT value
        let mut read_val = vec![0u8; 64];
        encoded.read_exact(&mut read_val).unwrap();
        assert_eq!(value, read_val);

        // Entire message was read
        assert_eq!(encoded.position(), 72);
    }

    #[test]
    fn two_field_message_encoding() {
        let dele_value = vec![b'a'; 24];
        let maxt_value = vec![b'z'; 32];

        let mut msg = RtMessage::new(2);
        msg.add_field(Tag::DELE, &dele_value).unwrap();
        msg.add_field(Tag::MAXT, &maxt_value).unwrap();

        let mut encoded = Cursor::new(msg.encode().unwrap());
        // Wire encoding
        //   4 num_tags
        //   8 (DELE, MAXT) tags
        //   4 MAXT offset
        //  24 DELE value
        //  32 MAXT value

        // num tags
        assert_eq!(encoded.read_u32::<LittleEndian>().unwrap(), 2);

        // Offset past DELE value to start of MAXT value
        assert_eq!(
            encoded.read_u32::<LittleEndian>().unwrap(),
            dele_value.len() as u32
        );

        // DELE tag
        let mut dele = [0u8; 4];
        encoded.read_exact(&mut dele).unwrap();
        assert_eq!(dele, Tag::DELE.wire_value());

        // MAXT tag
        let mut maxt = [0u8; 4];
        encoded.read_exact(&mut maxt).unwrap();
        assert_eq!(maxt, Tag::MAXT.wire_value());

        // DELE value
        let mut read_dele_val = vec![0u8; 24];
        encoded.read_exact(&mut read_dele_val).unwrap();
        assert_eq!(dele_value, read_dele_val);

        // MAXT value
        let mut read_maxt_val = vec![0u8; 32];
        encoded.read_exact(&mut read_maxt_val).unwrap();
        assert_eq!(maxt_value, read_maxt_val);

        // Everything was read
        assert_eq!(encoded.position() as usize, msg.encoded_size());
    }
}