summaryrefslogtreecommitdiff
path: root/src/message.rs
blob: 4e7e84bfdadb7395e7d49c26266092c1954e6a1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use std::io::Write;
use byteorder::{LittleEndian, WriteBytesExt};

use tag::Tag;
use error::Error;

#[derive(Debug)]
pub struct RtMessage<'a> {
    tags: Vec<Tag>,
    values: Vec<&'a [u8]>,
}

impl<'a> RtMessage<'a> {
    pub fn new(num_fields: u8) -> Self {
        RtMessage {
            tags: Vec::with_capacity(num_fields as usize),
            values: Vec::with_capacity(num_fields as usize)
        }
    }

    pub fn add_field(&mut self, tag: Tag, value: &'a [u8]) -> Result<(), Error> {
        if let Some(last_tag) = self.tags.last() {
            if tag <= *last_tag {
                return Err(Error::TagNotStrictlyIncreasing(tag));
            }
        }

        self.tags.push(tag);
        self.values.push(value);

        Ok(())
    }

    pub fn num_fields(&self) -> u32 {
        self.tags.len() as u32
    }

    pub fn encode(&self) -> Result<Vec<u8>, Error> {
        let num_tags = self.tags.len();
        let mut out = Vec::with_capacity(self.encoded_size());

        // number of tags
        out.write_u32::<LittleEndian>(num_tags as u32)?;

        // offset(s) to values, IFF there are two or more tags
        if num_tags > 1 {
            let mut offset_sum = self.values[0].len();

            for val in &self.values[1..] {
                out.write_u32::<LittleEndian>(offset_sum as u32)?;
                offset_sum += val.len();
            }
        }

        // write tags 
        for tag in &self.tags {
            out.write_all(tag.wire_value())?;
        }

        // write values
        for value in &self.values {
            out.write_all(value)?;
        }

        // check we wrote exactly what we expected
        assert!(out.len() == self.encoded_size(), "unexpected length");

        Ok(out)
    }

    pub fn encoded_size(&self) -> usize {
        let num_tags = self.tags.len();
        let tags_size = 4 * num_tags;
        let offsets_size = if num_tags < 2 { 0 } else { 4 * (num_tags - 1) };
        let values_size: usize = self.values.iter().map(|&v| v.len()).sum();

        4 + tags_size + offsets_size + values_size
    }
}

#[cfg(test)]
mod test {
    use std::io::{Cursor, Read};
    use byteorder::{LittleEndian, ReadBytesExt};
    use message::*;
    use tag::Tag;

    #[test]
    fn empty_message_size() {
        let msg = RtMessage::new(0);

        assert_eq!(msg.num_fields(), 0);
        // Empty message is 4 bytes, a single num_tags value
        assert_eq!(msg.encoded_size(), 4);
    }

    #[test]
    fn single_field_message_size() {
        let mut msg = RtMessage::new(1);
        msg.add_field(Tag::NONC, "1234".as_bytes()).unwrap();

        assert_eq!(msg.num_fields(), 1);
        // Single tag message is 4 (num_tags) + 4 (NONC) + 4 (value)
        assert_eq!(msg.encoded_size(), 12);
    }

    #[test]
    fn two_field_message_size() {
        let mut msg = RtMessage::new(2);
        msg.add_field(Tag::NONC, "1234".as_bytes()).unwrap();
        msg.add_field(Tag::PAD, "abcd".as_bytes()).unwrap();

        assert_eq!(msg.num_fields(), 2);
		// Two tag message
		//   4 num_tags
		//   8 (NONC, PAD) tags
		//   4 PAD offset
		//   8 values
        assert_eq!(msg.encoded_size(), 24);
    }

    #[test]
    fn empty_message_encoding() {
        let msg = RtMessage::new(0);
        let mut encoded = Cursor::new(msg.encode().unwrap());

        assert_eq!(encoded.read_u32::<LittleEndian>().unwrap(), 0);
    }

    #[test]
    fn single_field_message_encoding() {
        let value = vec![b'a'; 64];
        let mut msg = RtMessage::new(1);

        msg.add_field(Tag::CERT, &value).unwrap();

        let mut encoded = Cursor::new(msg.encode().unwrap());

        // num tags
        assert_eq!(encoded.read_u32::<LittleEndian>().unwrap(), 1);

        // CERT tag
        let mut cert = [0u8; 4];
        encoded.read_exact(&mut cert).unwrap();
        assert_eq!(cert, Tag::CERT.wire_value());

        // CERT value
        let mut read_val = vec![0u8; 64];
        encoded.read_exact(&mut read_val).unwrap();
        assert_eq!(value, read_val);

        // Entire message was read
        assert_eq!(encoded.position(), 72);
    }

    #[test]
    fn two_field_message_encoding() {
        let dele_value = vec![b'a'; 24];
        let maxt_value = vec![b'z'; 32];

        let mut msg = RtMessage::new(2);
        msg.add_field(Tag::DELE, &dele_value).unwrap();
        msg.add_field(Tag::MAXT, &maxt_value).unwrap();

        let mut encoded = Cursor::new(msg.encode().unwrap());
		// Wire encoding
		//   4 num_tags
		//   8 (DELE, MAXT) tags
		//   4 MAXT offset
		//  24 DELE value
		//  32 MAXT value

        // num tags
        assert_eq!(encoded.read_u32::<LittleEndian>().unwrap(), 2);

        // Offset past DELE value to start of MAXT value
        assert_eq!(encoded.read_u32::<LittleEndian>().unwrap(), dele_value.len() as u32);

        // DELE tag
        let mut dele = [0u8; 4];
        encoded.read_exact(&mut dele).unwrap();
        assert_eq!(dele, Tag::DELE.wire_value());
        
        // MAXT tag
        let mut maxt = [0u8; 4];
        encoded.read_exact(&mut maxt).unwrap();
        assert_eq!(maxt, Tag::MAXT.wire_value());

        // DELE value
        let mut read_dele_val = vec![0u8; 24];
        encoded.read_exact(&mut read_dele_val).unwrap();
        assert_eq!(dele_value, read_dele_val);
        
        // MAXT value
        let mut read_maxt_val = vec![0u8; 32];
        encoded.read_exact(&mut read_maxt_val).unwrap();
        assert_eq!(maxt_value, read_maxt_val);

        // Everything was read
        assert_eq!(encoded.position() as usize, msg.encoded_size());
    }
}