1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
// Copyright 2018 int08h LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//!
//! Merkle Tree implementation using SHA-512 and the Roughtime leaf and node tweak values.
//!
extern crate ring;
use super::{HASH_LENGTH, TREE_LEAF_TWEAK, TREE_NODE_TWEAK};
use self::ring::digest;
type Data = Vec<u8>;
type Hash = Data;
///
/// Merkle Tree implementation using SHA-512 and the Roughtime leaf and node tweak values.
///
pub struct MerkleTree {
levels: Vec<Vec<Data>>,
}
impl MerkleTree {
///
/// Create a new empty Merkle Tree
///
pub fn new() -> MerkleTree {
MerkleTree {
levels: vec![vec![]],
}
}
pub fn push_leaf(&mut self, data: &[u8]) {
let hash = self.hash_leaf(data);
self.levels[0].push(hash);
}
pub fn get_paths(&self, mut index: usize) -> Vec<u8> {
let mut paths = Vec::with_capacity(self.levels.len() * 64);
let mut level = 0;
while !self.levels[level].is_empty() {
let sibling = if index % 2 == 0 { index + 1 } else { index - 1 };
paths.extend(self.levels[level][sibling].clone());
level += 1;
index /= 2;
}
paths
}
pub fn compute_root(&mut self) -> Hash {
assert!(
self.levels[0].len() > 0,
"Must have at least one leaf to hash!"
);
let mut level = 0;
let mut node_count = self.levels[0].len();
while node_count > 1 {
level += 1;
if self.levels.len() < level + 1 {
self.levels.push(vec![]);
}
if node_count % 2 != 0 {
self.levels[level - 1].push(vec![0; HASH_LENGTH as usize]);
node_count += 1;
}
node_count /= 2;
for i in 0..node_count {
let hash = self.hash_nodes(
&self.levels[level - 1][i * 2],
&self.levels[level - 1][(i * 2) + 1],
);
self.levels[level].push(hash);
}
}
assert_eq!(self.levels[level].len(), 1);
self.levels[level].pop().unwrap()
}
pub fn reset(&mut self) {
for mut level in &mut self.levels {
level.clear();
}
}
fn hash_leaf(&self, leaf: &[u8]) -> Data {
self.hash(&[TREE_LEAF_TWEAK, leaf])
}
fn hash_nodes(&self, first: &[u8], second: &[u8]) -> Data {
self.hash(&[TREE_NODE_TWEAK, first, second])
}
fn hash(&self, to_hash: &[&[u8]]) -> Data {
let mut ctx = digest::Context::new(&digest::SHA512);
for data in to_hash {
ctx.update(data);
}
Data::from(ctx.finish().as_ref())
}
}
pub fn root_from_paths(mut index: usize, data: &[u8], paths: &[u8]) -> Hash {
let mut hash = {
let mut ctx = digest::Context::new(&digest::SHA512);
ctx.update(TREE_LEAF_TWEAK);
ctx.update(data);
Hash::from(ctx.finish().as_ref())
};
assert_eq!(paths.len() % 64, 0);
for path in paths.chunks(64) {
let mut ctx = digest::Context::new(&digest::SHA512);
ctx.update(TREE_NODE_TWEAK);
if index & 1 == 0 {
// Left
ctx.update(&hash);
ctx.update(path);
} else {
// Right
ctx.update(path);
ctx.update(&hash);
}
hash = Hash::from(ctx.finish().as_ref());
index >>= 1;
}
hash
}
#[cfg(test)]
mod test {
use merkle::*;
fn test_paths_with_num(num: usize) {
let mut merkle = MerkleTree::new();
for i in 0..num {
merkle.push_leaf(&[i as u8]);
}
let root = merkle.compute_root();
for i in 0..num {
println!("Testing {:?} {:?}", num, i);
let paths: Vec<u8> = merkle.get_paths(i);
let computed_root = root_from_paths(i, &[i as u8], &paths);
assert_eq!(root, computed_root);
}
}
#[test]
fn power_of_two() {
test_paths_with_num(2);
test_paths_with_num(4);
test_paths_with_num(8);
test_paths_with_num(16);
}
#[test]
fn not_power_of_two() {
test_paths_with_num(1);
test_paths_with_num(20);
}
}
|