1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
// Copyright 2017-2019 int08h LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::io::{Cursor, Read, Write};
use ring::aead::{open_in_place, seal_in_place, OpeningKey, SealingKey, AES_256_GCM};
use ring::rand::{SecureRandom, SystemRandom};
use crate::MIN_SEED_LENGTH;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use crate::kms::{KmsError, KmsProvider, AD, DEK_SIZE_BYTES, NONCE_SIZE_BYTES, TAG_SIZE_BYTES};
const DEK_LEN_FIELD: usize = 2;
const NONCE_LEN_FIELD: usize = 2;
// 2 bytes - encrypted DEK length
// 2 bytes - nonce length
// n bytes - encrypted DEK
// n bytes - nonce
// n bytes - opaque (AEAD encrypted seed + tag)
const MIN_PAYLOAD_SIZE: usize = DEK_LEN_FIELD
+ NONCE_LEN_FIELD
+ DEK_SIZE_BYTES
+ NONCE_SIZE_BYTES
+ MIN_SEED_LENGTH as usize
+ TAG_SIZE_BYTES;
// No input prefix to skip, consume entire buffer
const IN_PREFIX_LEN: usize = 0;
// Convenience function to create zero-filled Vec of given size
fn vec_zero_filled(len: usize) -> Vec<u8> {
(0..len).into_iter().map(|_| 0).collect()
}
/// Envelope encryption of the long-term key seed value.
///
/// The seed is encrypted using AES-GCM-256 with:
///
/// * 32 byte (256 bit) random key
/// * 12 byte (96 bit) random nonce
/// * 16 byte (128 bit) authentication tag
///
/// Randomness obtained from
/// [`ring::rand::SecureRandom`](https://briansmith.org/rustdoc/ring/rand/trait.SecureRandom.html).
///
/// The key used to encrypt the seed is wrapped (encrypted) using a
/// [`KmsProvider`](trait.KmsProvider.html) implementation.
///
pub struct EnvelopeEncryption;
impl EnvelopeEncryption {
/// Decrypt a seed previously encrypted with `encrypt_seed()`
pub fn decrypt_seed(kms: &KmsProvider, ciphertext_blob: &[u8]) -> Result<Vec<u8>, KmsError> {
if ciphertext_blob.len() < MIN_PAYLOAD_SIZE {
return Err(KmsError::InvalidData(format!(
"ciphertext too short: min {}, found {}",
MIN_PAYLOAD_SIZE,
ciphertext_blob.len()
)));
}
let mut tmp = Cursor::new(ciphertext_blob);
// Read the lengths of the wrapped DEK and of the nonce
let dek_len = tmp.read_u16::<LittleEndian>()? as usize;
let nonce_len = tmp.read_u16::<LittleEndian>()? as usize;
if nonce_len != NONCE_SIZE_BYTES || dek_len > ciphertext_blob.len() {
return Err(KmsError::InvalidData(format!(
"invalid DEK ({}) or nonce ({}) length",
dek_len, nonce_len
)));
}
// Consume the wrapped DEK
let mut encrypted_dek = vec_zero_filled(dek_len);
tmp.read_exact(&mut encrypted_dek)?;
// Consume the nonce
let mut nonce = vec_zero_filled(nonce_len);
tmp.read_exact(&mut nonce)?;
// Consume the encrypted seed + tag
let mut encrypted_seed = Vec::new();
tmp.read_to_end(&mut encrypted_seed)?;
// Invoke KMS to decrypt the DEK
let dek = kms.decrypt_dek(&encrypted_dek)?;
// Decrypt the seed value using the DEK
let dek_open_key = OpeningKey::new(&AES_256_GCM, &dek)?;
match open_in_place(
&dek_open_key,
&nonce,
AD.as_bytes(),
IN_PREFIX_LEN,
&mut encrypted_seed,
) {
Ok(plaintext_seed) => Ok(plaintext_seed.to_vec()),
Err(_) => Err(KmsError::OperationFailed(
"failed to decrypt plaintext seed".to_string(),
)),
}
}
///
/// Encrypt the seed value and protect the seed's encryption key using a
/// [`KmsProvider`](trait.KmsProvider.html).
///
/// The returned encrypted byte blob is safe to store on unsecured media.
///
pub fn encrypt_seed(kms: &KmsProvider, plaintext_seed: &[u8]) -> Result<Vec<u8>, KmsError> {
// Generate random DEK and nonce
let rng = SystemRandom::new();
let mut dek = [0u8; DEK_SIZE_BYTES];
let mut nonce = [0u8; NONCE_SIZE_BYTES];
rng.fill(&mut dek)?;
rng.fill(&mut nonce)?;
// Ring will overwrite plaintext with ciphertext in this buffer
let mut plaintext_buf = plaintext_seed.to_vec();
// Reserve space for the authentication tag which will be appended after the ciphertext
plaintext_buf.reserve(TAG_SIZE_BYTES);
for _ in 0..TAG_SIZE_BYTES {
plaintext_buf.push(0);
}
// Encrypt the plaintext seed using the DEK
let dek_seal_key = SealingKey::new(&AES_256_GCM, &dek)?;
let encrypted_seed = match seal_in_place(
&dek_seal_key,
&nonce,
AD.as_bytes(),
&mut plaintext_buf,
TAG_SIZE_BYTES,
) {
Ok(enc_len) => plaintext_buf[..enc_len].to_vec(),
Err(_) => {
return Err(KmsError::OperationFailed(
"failed to encrypt plaintext seed".to_string(),
))
}
};
// Use the KMS to wrap the DEK
let wrapped_dek = kms.encrypt_dek(&dek.to_vec())?;
// And coalesce everything together
let mut output = Vec::new();
output.write_u16::<LittleEndian>(wrapped_dek.len() as u16)?;
output.write_u16::<LittleEndian>(nonce.len() as u16)?;
output.write_all(&wrapped_dek)?;
output.write_all(&nonce)?;
output.write_all(&encrypted_seed)?;
Ok(output)
}
}
#[cfg(test)]
mod test {
use crate::kms::envelope::{DEK_LEN_FIELD, MIN_PAYLOAD_SIZE, NONCE_LEN_FIELD};
use crate::kms::EnvelopeEncryption;
use crate::kms::{KmsError, KmsProvider};
struct MockKmsProvider {}
// Mock provider that returns a copy of the input
impl KmsProvider for MockKmsProvider {
fn encrypt_dek(&self, plaintext_dek: &Vec<u8>) -> Result<Vec<u8>, KmsError> {
Ok(plaintext_dek.to_vec())
}
fn decrypt_dek(&self, encrypted_dek: &Vec<u8>) -> Result<Vec<u8>, KmsError> {
Ok(encrypted_dek.to_vec())
}
}
#[test]
fn decryption_reject_input_too_short() {
let ciphertext_blob = "1234567890";
assert!(ciphertext_blob.len() < MIN_PAYLOAD_SIZE);
let kms = MockKmsProvider {};
let result = EnvelopeEncryption::decrypt_seed(&kms, ciphertext_blob.as_bytes());
match result.expect_err("expected KmsError") {
KmsError::InvalidData(msg) => assert!(msg.contains("ciphertext too short")),
e => panic!("Unexpected error {:?}", e),
}
}
#[test]
fn encrypt_decrypt_round_trip() {
let kms = MockKmsProvider {};
let plaintext = Vec::from("This is the plaintext used for this test 1");
let enc_result = EnvelopeEncryption::encrypt_seed(&kms, &plaintext);
assert_eq!(enc_result.is_ok(), true);
let ciphertext = enc_result.unwrap();
assert_ne!(plaintext, ciphertext);
let dec_result = EnvelopeEncryption::decrypt_seed(&kms, &ciphertext);
assert_eq!(dec_result.is_ok(), true);
let new_plaintext = dec_result.unwrap();
assert_eq!(plaintext, new_plaintext);
}
#[test]
fn invalid_dek_length_detected() {
let kms = MockKmsProvider {};
let plaintext = Vec::from("This is the plaintext used for this test 2");
let enc_result = EnvelopeEncryption::encrypt_seed(&kms, &plaintext);
assert_eq!(enc_result.is_ok(), true);
let ciphertext = enc_result.unwrap();
let mut ciphertext_copy = ciphertext.clone();
ciphertext_copy[1] = 99;
let dec_result = EnvelopeEncryption::decrypt_seed(&kms, &ciphertext_copy);
match dec_result.expect_err("expected an error") {
KmsError::InvalidData(msg) => assert!(msg.contains("invalid DEK")),
e => panic!("unexpected error {:?}", e),
}
}
#[test]
fn invalid_nonce_length_detected() {
let kms = MockKmsProvider {};
let plaintext = Vec::from("This is the plaintext used for this test 3");
let enc_result = EnvelopeEncryption::encrypt_seed(&kms, &plaintext);
assert_eq!(enc_result.is_ok(), true);
let ciphertext = enc_result.unwrap();
let mut ciphertext_copy = ciphertext.clone();
ciphertext_copy[2] = 1;
let dec_result = EnvelopeEncryption::decrypt_seed(&kms, &ciphertext_copy);
match dec_result.expect_err("expected an error") {
KmsError::InvalidData(msg) => assert!(msg.contains("nonce (1)")),
e => panic!("unexpected error {:?}", e),
}
}
#[test]
fn modified_ciphertext_is_detected() {
let kms = MockKmsProvider {};
let plaintext = Vec::from("This is the plaintext used for this test 4");
let enc_result = EnvelopeEncryption::encrypt_seed(&kms, &plaintext);
assert_eq!(enc_result.is_ok(), true);
let ciphertext = enc_result.unwrap();
assert_ne!(plaintext, ciphertext);
// start corruption 4 bytes in, after the DEK and NONCE length fields
for i in (DEK_LEN_FIELD + NONCE_LEN_FIELD)..ciphertext.len() {
let mut ciphertext_copy = ciphertext.clone();
// flip some bits
ciphertext_copy[i] = ciphertext[i].wrapping_add(1);
let dec_result = EnvelopeEncryption::decrypt_seed(&kms, &ciphertext_copy);
match dec_result.expect_err("Expected a KmsError error here") {
KmsError::OperationFailed(msg) => assert!(msg.contains("failed to decrypt")),
e => panic!("unexpected result {:?}", e),
}
}
}
}
|