1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
use {
anyhow::{
anyhow,
Context,
Result,
},
std::{
cell::Cell,
collections::HashMap,
env::args,
fs::File,
io::{
BufRead,
BufReader,
},
path::Path,
},
};
#[derive(Clone,Copy,Debug,PartialEq)]
enum NodeType {
Small,
Large,
}
#[derive(Clone,Debug,PartialEq)]
struct Node {
name: String,
size: NodeType,
}
impl Node {
fn new<S: ToString>(name: S) -> Result<Self> {
let n = name.to_string();
let size = if n.chars().filter(|c| c.is_lowercase()).count() == n.len() {
Ok(NodeType::Small)
} else if n.chars().filter(|c| c.is_uppercase()).count() == n.len() {
Ok(NodeType::Large)
} else {
Err(anyhow!(r#"Could not determine whether {} is a large or small cave"#, n))
}?;
Ok(Self {
name: n,
size,
})
}
fn size(&self) -> NodeType {
self.size
}
}
#[derive(Clone,Debug)]
struct NodeList {
inner: Vec<Node>,
}
impl NodeList {
fn new<I, S>(init: I) -> Result<Self>
where I: Clone + IntoIterator<Item = (S, S)>, S: ToString
{
let mut nodelist = NodeList { inner: vec![], };
for (this, other) in init.into_iter() {
for name in [this.to_string(), other.to_string()].iter() {
if !nodelist.contains_key(name) {
let node = Node::new(name)?;
nodelist.push(node);
}
}
}
Ok(nodelist)
}
fn names(&self) -> Vec<&str> {
(0..self.inner.len()).into_iter().map(|index| {
self.inner[index].name.as_ref()
}).collect()
}
fn push(&mut self, node: Node) {
self.inner.push(node);
}
fn contains_key(&self, name: &str) -> bool {
for index in 0..self.inner.len() {
if self.inner[index].name == name {
return true;
}
}
false
}
fn get(&self, name: &str) -> Option<&Node> {
for index in 0..self.inner.len() {
if self.inner[index].name == name {
if let Some(node) = self.inner.get(index) {
return Some(node)
}
}
}
None
}
}
#[derive(Clone,Debug)]
struct Edge<'a> {
nodes: Vec<&'a Node>,
}
impl<'a> Edge<'a> {
fn new(nodes: Vec<&'a Node>) -> Self {
Self {
nodes,
}
}
fn contains(&self, needle: &Node) -> bool {
for node in &self.nodes {
if **node == *needle {
return true;
}
}
false
}
}
#[derive(Clone,Debug)]
struct EdgeList<'a> {
inner: Vec<Edge<'a>>,
}
impl<'a> EdgeList<'a> {
fn new<I, S>(init: I, nodelist: &'a NodeList) -> Result<Self>
where I: IntoIterator<Item = (S, S)>, S: ToString
{
let inner = init.into_iter().map(|(this, other)| {
let this_node = nodelist.get(&this.to_string())
.ok_or(anyhow!("Failed creating EdgeList"))?;
let other_node = nodelist.get(&other.to_string())
.ok_or(anyhow!("Failed creating EdgeList"))?;
Ok(Edge::new(vec![this_node, other_node]))
}).collect::<Result<Vec<_>>>()?;
Ok(Self {
inner,
})
}
fn neighbours(&self, this: &Node) -> Vec<&Node> {
let mut nodes = vec![];
for edge in self.inner.iter() {
if edge.contains(this) {
for node in edge.nodes.iter().filter(|node| ***node != *this) {
nodes.push(*node);
}
}
}
nodes
}
}
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
enum State {
Explorable,
Unexplored,
Visited,
Exhausted,
}
#[derive(Clone,Debug)]
struct VisitList {
inner: HashMap<String, Cell<State>>,
}
impl VisitList {
fn new<'a, I>(init: I, state: State) -> Self
where I: IntoIterator<Item = &'a str>
{
let inner = init.into_iter()
.map(|key| (String::from(key), Cell::new(state))).collect();
Self {
inner,
}
}
fn state(&self, key: &str) -> Option<State> {
self.inner.get(key).map(|cell| cell.get())
}
fn set_state(&self, key: &str, state: State) -> Result<()> {
self.inner.get(key)
.ok_or_else(|| anyhow!("Could not set state for non-existent: {}", key))?.set(state);
Ok(())
}
}
#[derive(Clone,Debug)]
struct Cave<'a> {
nodelist: &'a NodeList,
edgelist: EdgeList<'a>,
}
impl<'a> Cave<'a> {
fn new(nodelist: &'a NodeList, edgelist: EdgeList<'a>) -> Result<Self> {
Ok(Self{
nodelist,
edgelist,
})
}
fn explorable<'b, 'c: 'b>(&'b self, node: &'c Node) -> Explorable {
Explorable::new(&self.edgelist, node)
}
fn recurse(&self, visited: VisitList, node: &Node) -> Result<usize> {
let mut paths = 0;
let node_state = visited.state(&node.name)
.ok_or_else(|| anyhow!("No state for {}", node.name))?;
match (node.name.as_str(), node.size(), node_state) {
("start", _, _) => {
visited.set_state(&node.name, State::Exhausted)?;
},
("end", _, _) => {
return Ok(1);
},
(_, _, State::Exhausted) => {
return Ok(0);
}
(_, NodeType::Small, State::Explorable) => {
visited.set_state(&node.name, State::Visited)?;
}
(_, NodeType::Small, State::Unexplored) => {
visited.set_state(&node.name, State::Exhausted)?;
}
(_, NodeType::Small, State::Visited) => {
for cave in self.nodelist.inner.iter() {
let cave_state = visited.state(&cave.name);
if cave.size() == NodeType::Small {
if cave_state == Some(State::Explorable) {
visited.set_state(&cave.name, State::Unexplored)?;
} else {
visited.set_state(&cave.name, State::Exhausted)?;
}
}
}
visited.set_state(&node.name, State::Exhausted)?;
}
(_, NodeType::Large, State::Explorable | State::Unexplored | State::Visited) => {
visited.set_state(&node.name, State::Visited)?;
}
}
let explorable = self.explorable(node)
.collect::<Vec<_>>();
for next_node in explorable {
visited.set_state("end", State::Unexplored)?;
let next_state = visited.state(&next_node.name)
.ok_or_else(|| anyhow!("Missing state for: {}", next_node.name))?;
match (next_node.size(), next_state) {
(_, State::Exhausted) => {
continue;
},
(NodeType::Small, State::Explorable | State::Unexplored | State::Visited) => {
paths += self.recurse(visited.clone(), next_node)?;
},
(NodeType::Large, State::Explorable | State::Unexplored | State::Visited) => {
paths += self.recurse(visited.clone(), next_node)?;
},
}
}
Ok(paths)
}
fn walk_all(&self, state: State) -> Result<usize> {
let nodelist = &self.nodelist;
let node_names = nodelist.names();
let start = nodelist.get("start").ok_or(anyhow!("Could not find start node"))?;
let visited = VisitList::new(node_names, state);
self.recurse(visited, start)
}
}
struct Explorable<'a, 'b> {
positition: usize,
edgelist: &'a EdgeList<'a>,
node: &'b Node,
}
impl<'a, 'b> Explorable<'a, 'b> {
fn new(edgelist: &'a EdgeList, node: &'b Node) -> Self {
Self {
positition: 0,
edgelist,
node,
}
}
}
impl<'a, 'b> Iterator for Explorable<'a, 'b> {
type Item = &'a Node;
fn next(&mut self) -> Option<Self::Item> {
let neighbours = self.edgelist.neighbours(self.node);
let next = neighbours.into_iter().nth(self.positition);
self.positition += 1;
next
}
}
fn read_input<T: AsRef<Path>>(filename: T) -> Result<Vec<(String, String)>> {
let reader = BufReader::new(File::open(filename)?);
reader.lines().map(
|v| {
let s = v?;
let (left, right) = s.split_once('-')
.ok_or_else(|| anyhow!("Unable to parse: {}", s))?;
Ok((String::from(left), String::from(right)))
}
).collect()
}
fn part1(cave: Cave) -> Result<usize> {
let paths = cave.walk_all(State::Unexplored)?;
Ok(paths)
}
fn part2(cave: Cave) -> Result<usize> {
let paths = cave.walk_all(State::Explorable)?;
Ok(paths)
}
fn main() -> Result<()> {
let ( do_part_1, do_part_2 ) = aoc::do_parts();
let filename = args().nth(1).ok_or(anyhow!("Missing input filename"))?;
let input = read_input(filename).context("Could not read input")?;
let nodelist = NodeList::new(input.clone())?;
let edgelist = EdgeList::new(input, &nodelist)?;
let cave = Cave::new(&nodelist, edgelist)?;
if do_part_1 {
let solution = part1(cave.clone()).context("No solution for part 1")?;
println!("Part1, solution found to be: {}", solution);
}
if do_part_2 {
let solution = part2(cave).context("No solution for part 2")?;
println!("Part2, solution found to be: {}", solution);
}
Ok(())
}
|