summaryrefslogtreecommitdiff
path: root/Kernel/UserOrKernelBuffer.h
blob: 7e6f8600bfb13fd58aaea1c813416ae851544791 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
 * Copyright (c) 2020, the SerenityOS developers.
 * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Types.h>
#include <AK/Userspace.h>
#include <Kernel/API/POSIX/errno.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/StdLib.h>
#include <Kernel/UnixTypes.h>

namespace Kernel {

class [[nodiscard]] UserOrKernelBuffer {
public:
    UserOrKernelBuffer() = delete;

    static UserOrKernelBuffer for_kernel_buffer(u8* kernel_buffer)
    {
        VERIFY(!kernel_buffer || !Memory::is_user_address(VirtualAddress(kernel_buffer)));
        return UserOrKernelBuffer(kernel_buffer);
    }

    static ErrorOr<UserOrKernelBuffer> for_user_buffer(u8* user_buffer, size_t size)
    {
        if (user_buffer && !Memory::is_user_range(VirtualAddress(user_buffer), size))
            return Error::from_errno(EFAULT);
        return UserOrKernelBuffer(user_buffer);
    }

    template<typename UserspaceType>
    static ErrorOr<UserOrKernelBuffer> for_user_buffer(UserspaceType userspace, size_t size)
    {
        if (!Memory::is_user_range(VirtualAddress(userspace.unsafe_userspace_ptr()), size))
            return Error::from_errno(EFAULT);
        return UserOrKernelBuffer(const_cast<u8*>((u8 const*)userspace.unsafe_userspace_ptr()));
    }

    [[nodiscard]] bool is_kernel_buffer() const;
    [[nodiscard]] void const* user_or_kernel_ptr() const { return m_buffer; }

    [[nodiscard]] UserOrKernelBuffer offset(size_t offset) const
    {
        if (!m_buffer)
            return *this;
        UserOrKernelBuffer offset_buffer = *this;
        offset_buffer.m_buffer += offset;
        VERIFY(offset_buffer.is_kernel_buffer() == is_kernel_buffer());
        return offset_buffer;
    }

    ErrorOr<NonnullOwnPtr<KString>> try_copy_into_kstring(size_t) const;
    ErrorOr<void> write(void const* src, size_t offset, size_t len);
    ErrorOr<void> write(void const* src, size_t len)
    {
        return write(src, 0, len);
    }
    ErrorOr<void> write(ReadonlyBytes bytes)
    {
        return write(bytes.data(), bytes.size());
    }

    ErrorOr<void> read(void* dest, size_t offset, size_t len) const;
    ErrorOr<void> read(void* dest, size_t len) const
    {
        return read(dest, 0, len);
    }

    ErrorOr<void> read(Bytes bytes) const
    {
        return read(bytes.data(), bytes.size());
    }

    ErrorOr<void> memset(int value, size_t offset, size_t len);
    ErrorOr<void> memset(int value, size_t len)
    {
        return memset(value, 0, len);
    }

    template<size_t BUFFER_BYTES, typename F>
    ErrorOr<size_t> write_buffered(size_t offset, size_t len, F f)
    {
        if (!m_buffer)
            return EFAULT;
        if (is_kernel_buffer()) {
            // We're transferring directly to a kernel buffer, bypass
            Bytes bytes { m_buffer + offset, len };
            return f(bytes);
        }

        // The purpose of using a buffer on the stack is that we can
        // avoid a bunch of small (e.g. 1-byte) copy_to_user calls
        u8 buffer[BUFFER_BYTES];
        size_t nwritten = 0;
        while (nwritten < len) {
            auto to_copy = min(sizeof(buffer), len - nwritten);
            Bytes bytes { buffer, to_copy };
            ErrorOr<size_t> copied_or_error = f(bytes);
            if (copied_or_error.is_error())
                return copied_or_error.release_error();
            auto copied = copied_or_error.release_value();
            VERIFY(copied <= to_copy);
            TRY(write(buffer, nwritten, copied));
            nwritten += copied;
            if (copied < to_copy)
                break;
        }
        return nwritten;
    }
    template<size_t BUFFER_BYTES, typename F>
    ErrorOr<size_t> write_buffered(size_t len, F f)
    {
        return write_buffered<BUFFER_BYTES, F>(0, len, f);
    }

    template<size_t BUFFER_BYTES, typename F>
    ErrorOr<size_t> read_buffered(size_t offset, size_t len, F f) const
    {
        if (!m_buffer)
            return EFAULT;
        if (is_kernel_buffer()) {
            // We're transferring directly from a kernel buffer, bypass
            return f({ m_buffer + offset, len });
        }

        // The purpose of using a buffer on the stack is that we can
        // avoid a bunch of small (e.g. 1-byte) copy_from_user calls
        u8 buffer[BUFFER_BYTES];
        size_t nread = 0;
        while (nread < len) {
            auto to_copy = min(sizeof(buffer), len - nread);
            TRY(read(buffer, nread, to_copy));
            ReadonlyBytes read_only_bytes { buffer, to_copy };
            ErrorOr<size_t> copied_or_error = f(read_only_bytes);
            if (copied_or_error.is_error())
                return copied_or_error.release_error();
            auto copied = copied_or_error.release_value();
            VERIFY(copied <= to_copy);
            nread += copied;
            if (copied < to_copy)
                break;
        }
        return nread;
    }
    template<size_t BUFFER_BYTES, typename F>
    ErrorOr<size_t> read_buffered(size_t len, F f) const
    {
        return read_buffered<BUFFER_BYTES, F>(0, len, f);
    }

private:
    explicit UserOrKernelBuffer(u8* buffer)
        : m_buffer(buffer)
    {
    }

    u8* m_buffer;
};

}