summaryrefslogtreecommitdiff
path: root/Kernel/Memory/MemoryManager.cpp
blob: 6c1469b84fbd8125c5588322c3f170319ce89404 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
/*
 * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Assertions.h>
#include <AK/StringView.h>
#include <Kernel/Arch/CPU.h>
#include <Kernel/Arch/PageDirectory.h>
#include <Kernel/Arch/PageFault.h>
#include <Kernel/Arch/RegisterState.h>
#include <Kernel/Boot/BootInfo.h>
#include <Kernel/Boot/Multiboot.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/InterruptDisabler.h>
#include <Kernel/KSyms.h>
#include <Kernel/Library/Panic.h>
#include <Kernel/Library/StdLib.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PhysicalRegion.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/Prekernel/Prekernel.h>
#include <Kernel/Sections.h>
#include <Kernel/Tasks/Process.h>

extern u8 start_of_kernel_image[];
extern u8 end_of_kernel_image[];
extern u8 start_of_kernel_text[];
extern u8 start_of_kernel_data[];
extern u8 end_of_kernel_bss[];
extern u8 start_of_ro_after_init[];
extern u8 end_of_ro_after_init[];
extern u8 start_of_unmap_after_init[];
extern u8 end_of_unmap_after_init[];
extern u8 start_of_kernel_ksyms[];
extern u8 end_of_kernel_ksyms[];

extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
extern size_t multiboot_copy_boot_modules_count;

namespace Kernel::Memory {

ErrorOr<FlatPtr> page_round_up(FlatPtr x)
{
    if (x > (explode_byte(0xFF) & ~0xFFF)) {
        return Error::from_errno(EINVAL);
    }
    return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
}

// NOTE: We can NOT use Singleton for this class, because
// MemoryManager::initialize is called *before* global constructors are
// run. If we do, then Singleton would get re-initialized, causing
// the memory manager to be initialized twice!
static MemoryManager* s_the;

MemoryManager& MemoryManager::the()
{
    return *s_the;
}

bool MemoryManager::is_initialized()
{
    return s_the != nullptr;
}

static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
{
#if ARCH(AARCH64)
    // NOTE: This is not the same as x86_64, because the aarch64 kernel currently doesn't use the pre-kernel.
    return VirtualRange { VirtualAddress(kernel_mapping_base), KERNEL_PD_END - kernel_mapping_base };
#else
    size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
    return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
#endif
}

MemoryManager::GlobalData::GlobalData()
    : region_tree(kernel_virtual_range())
{
}

UNMAP_AFTER_INIT MemoryManager::MemoryManager()
{
    s_the = this;

    parse_memory_map();
    activate_kernel_page_directory(kernel_page_directory());
    protect_kernel_image();

    // We're temporarily "committing" to two pages that we need to allocate below
    auto committed_pages = commit_physical_pages(2).release_value();

    m_shared_zero_page = committed_pages.take_one();

    // We're wasting a page here, we just need a special tag (physical
    // address) so that we know when we need to lazily allocate a page
    // that we should be drawing this page from the committed pool rather
    // than potentially failing if no pages are available anymore.
    // By using a tag we don't have to query the VMObject for every page
    // whether it was committed or not
    m_lazy_committed_page = committed_pages.take_one();
}

UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;

UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
{
    SpinlockLocker page_lock(kernel_page_directory().get_lock());
    // Disable writing to the kernel text and rodata segments.
    for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
        auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
        pte.set_writable(false);
    }
    if (Processor::current().has_nx()) {
        // Disable execution of the kernel data, bss and heap segments.
        for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
            auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
            pte.set_execute_disabled(true);
        }
    }
}

UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
{
    SpinlockLocker page_lock(kernel_page_directory().get_lock());

    auto start = start_of_prekernel_image.page_base().get();
    auto end = end_of_prekernel_image.page_base().get();

    for (auto i = start; i <= end; i += PAGE_SIZE)
        release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
    flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
}

UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
{
    SpinlockLocker page_lock(kernel_page_directory().get_lock());
    // Disable writing to the .ro_after_init section
    for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
        auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
        pte.set_writable(false);
        flush_tlb(&kernel_page_directory(), VirtualAddress(i));
    }
}

void MemoryManager::unmap_text_after_init()
{
    SpinlockLocker page_lock(kernel_page_directory().get_lock());

    auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
    auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();

    // Unmap the entire .unmap_after_init section
    for (auto i = start; i < end; i += PAGE_SIZE) {
        auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
        pte.clear();
        flush_tlb(&kernel_page_directory(), VirtualAddress(i));
    }

    dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
}

UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
{
    SpinlockLocker page_lock(kernel_page_directory().get_lock());

    auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
    auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();

    for (auto i = start; i < end; i += PAGE_SIZE) {
        auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
        pte.set_writable(false);
        flush_tlb(&kernel_page_directory(), VirtualAddress(i));
    }

    dmesgln("Write-protected kernel symbols after init.");
}

IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
{
    return m_global_data.with([&](auto& global_data) {
        VERIFY(!global_data.physical_memory_ranges.is_empty());
        for (auto& current_range : global_data.physical_memory_ranges) {
            IterationDecision decision = callback(current_range);
            if (decision != IterationDecision::Continue)
                return decision;
        }
        return IterationDecision::Continue;
    });
}

UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
{
    m_global_data.with([&](auto& global_data) {
        VERIFY(!global_data.physical_memory_ranges.is_empty());
        ContiguousReservedMemoryRange range;
        for (auto& current_range : global_data.physical_memory_ranges) {
            if (current_range.type != PhysicalMemoryRangeType::Reserved) {
                if (range.start.is_null())
                    continue;
                global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
                range.start.set((FlatPtr) nullptr);
                continue;
            }
            if (!range.start.is_null()) {
                continue;
            }
            range.start = current_range.start;
        }
        if (global_data.physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
            return;
        if (range.start.is_null())
            return;
        global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, global_data.physical_memory_ranges.last().start.get() + global_data.physical_memory_ranges.last().length - range.start.get() });
    });
}

bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
{
    // Note: Guard against overflow in case someone tries to mmap on the edge of
    // the RAM
    if (start_address.offset_addition_would_overflow(read_length))
        return false;
    auto end_address = start_address.offset(read_length);

    return m_global_data.with([&](auto& global_data) {
        for (auto const& current_range : global_data.reserved_memory_ranges) {
            if (current_range.start > start_address)
                continue;
            if (current_range.start.offset(current_range.length) < end_address)
                continue;
            return true;
        }
        return false;
    });
}

UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
{
    // Register used memory regions that we know of.
    m_global_data.with([&](auto& global_data) {
        global_data.used_memory_ranges.ensure_capacity(4);
#if ARCH(X86_64)
        // NOTE: We don't touch the first 1 MiB of RAM on x86-64 even if it's usable as indicated
        // by a certain memory map. There are 2 reasons for this:
        //
        // The first reason is specified for Linux doing the same thing in
        // https://cateee.net/lkddb/web-lkddb/X86_RESERVE_LOW.html -
        // "By default we reserve the first 64K of physical RAM, as a number of BIOSes are known
        //  to corrupt that memory range during events such as suspend/resume or monitor cable insertion,
        //  so it must not be used by the kernel."
        //
        // Linux also allows configuring this knob in compiletime for this reserved range length, that might
        // also include the EBDA and other potential ranges in the first 1 MiB that could be corrupted by the BIOS:
        // "You can set this to 4 if you are absolutely sure that you trust the BIOS to get all its memory
        //  reservations and usages right. If you know your BIOS have problems beyond the default 64K area,
        //  you can set this to 640 to avoid using the entire low memory range."
        //
        // The second reason is that the first 1 MiB memory range should also include the actual BIOS blob
        // together with possible execution blob code for various option ROMs, which should not be touched
        // by our kernel.
        //
        // **To be completely on the safe side** and never worry about where the EBDA is located, how BIOS might
        // corrupt the low memory range during power state changing, other bad behavior of some BIOS might change
        // a value in the very first 64k bytes of RAM, etc - we should just ignore this range completely.
        global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
#endif
        global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });

        if (multiboot_flags & 0x4) {
            auto* bootmods_start = multiboot_copy_boot_modules_array;
            auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;

            for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
                global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
            }
        }

        auto* mmap_begin = multiboot_memory_map;
        auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;

        struct ContiguousPhysicalVirtualRange {
            PhysicalAddress lower;
            PhysicalAddress upper;
        };

        Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;

        for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
            // We have to copy these onto the stack, because we take a reference to these when printing them out,
            // and doing so on a packed struct field is UB.
            auto address = mmap->addr;
            auto length = mmap->len;
            ArmedScopeGuard write_back_guard = [&]() {
                mmap->addr = address;
                mmap->len = length;
            };

            dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);

            auto start_address = PhysicalAddress(address);
            switch (mmap->type) {
            case (MULTIBOOT_MEMORY_AVAILABLE):
                global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
                break;
            case (MULTIBOOT_MEMORY_RESERVED):
#if ARCH(X86_64)
                // Workaround for https://gitlab.com/qemu-project/qemu/-/commit/8504f129450b909c88e199ca44facd35d38ba4de
                // That commit added a reserved 12GiB entry for the benefit of virtual firmware.
                // We can safely ignore this block as it isn't actually reserved on any real hardware.
                // From: https://lore.kernel.org/all/20220701161014.3850-1-joao.m.martins@oracle.com/
                // "Always add the HyperTransport range into e820 even when the relocation isn't
                // done *and* there's >= 40 phys bit that would put max phyusical boundary to 1T
                // This should allow virtual firmware to avoid the reserved range at the
                // 1T boundary on VFs with big bars."
                if (address != 0x000000fd00000000 || length != (0x000000ffffffffff - 0x000000fd00000000) + 1)
#endif
                    global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
                break;
            case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
                global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
                break;
            case (MULTIBOOT_MEMORY_NVS):
                global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
                break;
            case (MULTIBOOT_MEMORY_BADRAM):
                dmesgln("MM: Warning, detected bad memory range!");
                global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
                break;
            default:
                dbgln("MM: Unknown range!");
                global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
                break;
            }

            if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
                continue;

            // Fix up unaligned memory regions.
            auto diff = (FlatPtr)address % PAGE_SIZE;
            if (diff != 0) {
                dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
                diff = PAGE_SIZE - diff;
                address += diff;
                length -= diff;
            }
            if ((length % PAGE_SIZE) != 0) {
                dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
                length -= length % PAGE_SIZE;
            }
            if (length < PAGE_SIZE) {
                dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
                continue;
            }

            for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
                auto addr = PhysicalAddress(page_base);

                // Skip used memory ranges.
                bool should_skip = false;
                for (auto& used_range : global_data.used_memory_ranges) {
                    if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
                        should_skip = true;
                        break;
                    }
                }
                if (should_skip)
                    continue;

                if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
                    contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
                        .lower = addr,
                        .upper = addr,
                    });
                } else {
                    contiguous_physical_ranges.last().upper = addr;
                }
            }
        }

        for (auto& range : contiguous_physical_ranges) {
            global_data.physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
        }

        for (auto& region : global_data.physical_regions)
            global_data.system_memory_info.physical_pages += region->size();

        register_reserved_ranges();
        for (auto& range : global_data.reserved_memory_ranges) {
            dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
        }

        initialize_physical_pages();

        VERIFY(global_data.system_memory_info.physical_pages > 0);

        // We start out with no committed pages
        global_data.system_memory_info.physical_pages_uncommitted = global_data.system_memory_info.physical_pages;

        for (auto& used_range : global_data.used_memory_ranges) {
            dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
        }

        for (auto& region : global_data.physical_regions) {
            dmesgln("MM: User physical region: {} - {} (size {:#x})", region->lower(), region->upper().offset(-1), PAGE_SIZE * region->size());
            region->initialize_zones();
        }
    });
}

UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
{
    m_global_data.with([&](auto& global_data) {
        // We assume that the physical page range is contiguous and doesn't contain huge gaps!
        PhysicalAddress highest_physical_address;
        for (auto& range : global_data.used_memory_ranges) {
            if (range.end.get() > highest_physical_address.get())
                highest_physical_address = range.end;
        }
        for (auto& region : global_data.physical_memory_ranges) {
            auto range_end = PhysicalAddress(region.start).offset(region.length);
            if (range_end.get() > highest_physical_address.get())
                highest_physical_address = range_end;
        }

        // Calculate how many total physical pages the array will have
        m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
        VERIFY(m_physical_page_entries_count != 0);
        VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));

        // Calculate how many bytes the array will consume
        auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
        auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
        VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);

        // Calculate how many page tables we will need to be able to map them all
        auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;

        auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;

        // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
        PhysicalRegion* found_region { nullptr };
        Optional<size_t> found_region_index;
        for (size_t i = 0; i < global_data.physical_regions.size(); ++i) {
            auto& region = global_data.physical_regions[i];
            if (region->size() >= physical_page_array_pages_and_page_tables_count) {
                found_region = region;
                found_region_index = i;
                break;
            }
        }

        if (!found_region) {
            dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
            VERIFY_NOT_REACHED();
        }

        VERIFY(global_data.system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
        global_data.system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;

        if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
            // We're stealing the entire region
            global_data.physical_pages_region = global_data.physical_regions.take(*found_region_index);
        } else {
            global_data.physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
        }
        global_data.used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, global_data.physical_pages_region->lower(), global_data.physical_pages_region->upper() });

        // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
        m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();

        {
            // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
            FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
            FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
            MUST(global_data.region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
        }

        // Allocate a virtual address range for our array
        // This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
        auto& region = *MUST(Region::create_unbacked()).leak_ptr();
        MUST(global_data.region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
        auto range = region.range();

        // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
        // try to map the entire region into kernel space so we always have it
        // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
        // mapped yet so we can't create them

        // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
        auto page_tables_base = global_data.physical_pages_region->lower();
        auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
        auto physical_page_array_current_page = physical_page_array_base.get();
        auto virtual_page_array_base = range.base().get();
        auto virtual_page_array_current_page = virtual_page_array_base;
        for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
            auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
            auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
            auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
            __builtin_memset(pt, 0, PAGE_SIZE);
            for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
                auto& pte = pt[pte_index];
                pte.set_physical_page_base(physical_page_array_current_page);
                pte.set_user_allowed(false);
                pte.set_writable(true);
                if (Processor::current().has_nx())
                    pte.set_execute_disabled(false);
                pte.set_global(true);
                pte.set_present(true);

                physical_page_array_current_page += PAGE_SIZE;
                virtual_page_array_current_page += PAGE_SIZE;
            }
            unquickmap_page();

            // Hook the page table into the kernel page directory
            u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
            auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
            PageDirectoryEntry& pde = pd[page_directory_index];

            VERIFY(!pde.is_present()); // Nothing should be using this PD yet

            // We can't use ensure_pte quite yet!
            pde.set_page_table_base(pt_paddr.get());
            pde.set_user_allowed(false);
            pde.set_present(true);
            pde.set_writable(true);
            pde.set_global(true);

            unquickmap_page();

            flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
        }

        // We now have the entire PhysicalPageEntry array mapped!
        m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
        for (size_t i = 0; i < m_physical_page_entries_count; i++)
            new (&m_physical_page_entries[i]) PageTableEntry();

        // Now we should be able to allocate PhysicalPage instances,
        // so finish setting up the kernel page directory
        m_kernel_page_directory->allocate_kernel_directory();

        // Now create legit PhysicalPage objects for the page tables we created.
        virtual_page_array_current_page = virtual_page_array_base;
        for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
            VERIFY(virtual_page_array_current_page <= range.end().get());
            auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
            auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
            auto& physical_page_entry = m_physical_page_entries[physical_page_index];
            auto physical_page = adopt_lock_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));

            // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
            (void)physical_page.leak_ref();

            virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
        }

        dmesgln("MM: Physical page entries: {}", range);
    });
}

PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
{
    auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
    VERIFY(physical_page_entry_index < m_physical_page_entries_count);
    return m_physical_page_entries[physical_page_entry_index];
}

PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
{
    PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
    size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
    VERIFY(physical_page_entry_index < m_physical_page_entries_count);
    return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
}

PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(page_directory.get_lock().is_locked_by_current_processor());
    u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
    u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
    u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;

    auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
    PageDirectoryEntry const& pde = pd[page_directory_index];
    if (!pde.is_present())
        return nullptr;

    return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
}

PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(page_directory.get_lock().is_locked_by_current_processor());
    u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
    u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
    u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;

    auto* pd = quickmap_pd(page_directory, page_directory_table_index);
    auto& pde = pd[page_directory_index];
    if (pde.is_present())
        return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];

    bool did_purge = false;
    auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
    if (page_table_or_error.is_error()) {
        dbgln("MM: Unable to allocate page table to map {}", vaddr);
        return nullptr;
    }
    auto page_table = page_table_or_error.release_value();
    if (did_purge) {
        // If any memory had to be purged, ensure_pte may have been called as part
        // of the purging process. So we need to re-map the pd in this case to ensure
        // we're writing to the correct underlying physical page
        pd = quickmap_pd(page_directory, page_directory_table_index);
        VERIFY(&pde == &pd[page_directory_index]); // Sanity check

        VERIFY(!pde.is_present()); // Should have not changed
    }
    pde.set_page_table_base(page_table->paddr().get());
    pde.set_user_allowed(true);
    pde.set_present(true);
    pde.set_writable(true);
    pde.set_global(&page_directory == m_kernel_page_directory.ptr());

    // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
    (void)page_table.leak_ref();

    return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
}

void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
{
    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(page_directory.get_lock().is_locked_by_current_processor());
    u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
    u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
    u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;

    auto* pd = quickmap_pd(page_directory, page_directory_table_index);
    PageDirectoryEntry& pde = pd[page_directory_index];
    if (pde.is_present()) {
        auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
        auto& pte = page_table[page_table_index];
        pte.clear();

        if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
            // If this is the last PTE in a region or the last PTE in a page table then
            // check if we can also release the page table
            bool all_clear = true;
            for (u32 i = 0; i <= 0x1ff; i++) {
                if (!page_table[i].is_null()) {
                    all_clear = false;
                    break;
                }
            }
            if (all_clear) {
                get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
                pde.clear();
            }
        }
    }
}

UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
{
    dmesgln("Initialize MMU");
    ProcessorSpecific<MemoryManagerData>::initialize();

    if (cpu == 0) {
        new MemoryManager;
        kmalloc_enable_expand();
    }
}

Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
{
    return space.find_region_containing({ vaddr, 1 });
}

void MemoryManager::validate_syscall_preconditions(Process& process, RegisterState const& regs)
{
    bool should_crash = false;
    char const* crash_description = nullptr;
    int crash_signal = 0;

    auto unlock_and_handle_crash = [&](char const* description, int signal) {
        should_crash = true;
        crash_description = description;
        crash_signal = signal;
    };

    process.address_space().with([&](auto& space) -> void {
        VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
        if (!MM.validate_user_stack(*space, userspace_sp)) {
            dbgln("Invalid stack pointer: {}", userspace_sp);
            return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
        }

        VirtualAddress ip = VirtualAddress { regs.ip() };
        auto* calling_region = MM.find_user_region_from_vaddr(*space, ip);
        if (!calling_region) {
            dbgln("Syscall from {:p} which has no associated region", ip);
            return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
        }

        if (calling_region->is_writable()) {
            dbgln("Syscall from writable memory at {:p}", ip);
            return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
        }

        if (space->enforces_syscall_regions() && !calling_region->is_syscall_region()) {
            dbgln("Syscall from non-syscall region");
            return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
        }
    });

    if (should_crash) {
        handle_crash(regs, crash_description, crash_signal);
    }
}

PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
{
    auto faulted_in_range = [&fault](auto const* start, auto const* end) {
        return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
    };

    if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init)) {
        dbgln("Attempt to write into READONLY_AFTER_INIT section");
        return PageFaultResponse::ShouldCrash;
    }

    if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
        auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
        dbgln("Attempt to access UNMAP_AFTER_INIT section ({}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
        return PageFaultResponse::ShouldCrash;
    }

    if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms)) {
        dbgln("Attempt to access KSYMS section");
        return PageFaultResponse::ShouldCrash;
    }

    if (Processor::current_in_irq()) {
        dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
            Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
        dump_kernel_regions();
        return PageFaultResponse::ShouldCrash;
    }
    dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());

    // The faulting region may be unmapped concurrently to handling this page fault, and since
    // regions are singly-owned it would usually result in the region being immediately
    // de-allocated. To ensure the region is not de-allocated while we're still handling the
    // fault we increase a page fault counter on the region, and the region will refrain from
    // de-allocating itself until the counter reaches zero. (Since unmapping the region also
    // includes removing it from the region tree while holding the address space spinlock, and
    // because we increment the counter while still holding the spinlock it is guaranteed that
    // we always increment the counter before it gets a chance to be deleted)
    Region* region = nullptr;
    if (is_user_address(fault.vaddr())) {
        auto page_directory = PageDirectory::find_current();
        if (!page_directory)
            return PageFaultResponse::ShouldCrash;
        auto* process = page_directory->process();
        VERIFY(process);
        region = process->address_space().with([&](auto& space) -> Region* {
            auto* region = find_user_region_from_vaddr(*space, fault.vaddr());
            if (!region)
                return nullptr;
            region->start_handling_page_fault({});
            return region;
        });
    } else {
        region = MM.m_global_data.with([&](auto& global_data) -> Region* {
            auto* region = global_data.region_tree.find_region_containing(fault.vaddr());
            if (!region)
                return nullptr;
            region->start_handling_page_fault({});
            return region;
        });
    }
    if (!region)
        return PageFaultResponse::ShouldCrash;

    auto response = region->handle_fault(fault);
    region->finish_handling_page_fault({});
    return response;
}

ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
{
    VERIFY(!(size % PAGE_SIZE));
    OwnPtr<KString> name_kstring;
    if (!name.is_null())
        name_kstring = TRY(KString::try_create(name));
    auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
    auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
    TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
    TRY(region->map(kernel_page_directory()));
    return region;
}

ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
{
    dma_buffer_page = TRY(allocate_physical_page());
    // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behavior by default)
    return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
}

ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
{
    RefPtr<Memory::PhysicalPage> dma_buffer_page;

    return allocate_dma_buffer_page(name, access, dma_buffer_page);
}

ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, Vector<NonnullRefPtr<Memory::PhysicalPage>>& dma_buffer_pages)
{
    VERIFY(!(size % PAGE_SIZE));
    dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
    // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behavior by default)
    return allocate_kernel_region(dma_buffer_pages.first()->paddr(), size, name, access, Region::Cacheable::No);
}

ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
{
    VERIFY(!(size % PAGE_SIZE));
    Vector<NonnullRefPtr<Memory::PhysicalPage>> dma_buffer_pages;

    return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
}

ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
{
    VERIFY(!(size % PAGE_SIZE));
    OwnPtr<KString> name_kstring;
    if (!name.is_null())
        name_kstring = TRY(KString::try_create(name));
    auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
    auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
    TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
    TRY(region->map(kernel_page_directory()));
    return region;
}

ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
{
    VERIFY(!(size % PAGE_SIZE));
    auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
    OwnPtr<KString> name_kstring;
    if (!name.is_null())
        name_kstring = TRY(KString::try_create(name));
    auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
    TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE); }));
    TRY(region->map(kernel_page_directory()));
    return region;
}

ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
{
    VERIFY(!(size % PAGE_SIZE));

    OwnPtr<KString> name_kstring;
    if (!name.is_null())
        name_kstring = TRY(KString::try_create(name));

    auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
    TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
    TRY(region->map(kernel_page_directory()));
    return region;
}

ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
{
    VERIFY(page_count > 0);
    auto result = m_global_data.with([&](auto& global_data) -> ErrorOr<CommittedPhysicalPageSet> {
        if (global_data.system_memory_info.physical_pages_uncommitted < page_count) {
            dbgln("MM: Unable to commit {} pages, have only {}", page_count, global_data.system_memory_info.physical_pages_uncommitted);
            return ENOMEM;
        }

        global_data.system_memory_info.physical_pages_uncommitted -= page_count;
        global_data.system_memory_info.physical_pages_committed += page_count;
        return CommittedPhysicalPageSet { {}, page_count };
    });
    if (result.is_error()) {
        Process::for_each_ignoring_jails([&](Process const& process) {
            size_t amount_resident = 0;
            size_t amount_shared = 0;
            size_t amount_virtual = 0;
            process.address_space().with([&](auto& space) {
                amount_resident = space->amount_resident();
                amount_shared = space->amount_shared();
                amount_virtual = space->amount_virtual();
            });
            process.name().with([&](auto& process_name) {
                dbgln("{}({}) resident:{}, shared:{}, virtual:{}",
                    process_name->view(),
                    process.pid(),
                    amount_resident / PAGE_SIZE,
                    amount_shared / PAGE_SIZE,
                    amount_virtual / PAGE_SIZE);
            });
            return IterationDecision::Continue;
        });
    }
    return result;
}

void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
{
    VERIFY(page_count > 0);

    m_global_data.with([&](auto& global_data) {
        VERIFY(global_data.system_memory_info.physical_pages_committed >= page_count);

        global_data.system_memory_info.physical_pages_uncommitted += page_count;
        global_data.system_memory_info.physical_pages_committed -= page_count;
    });
}

void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
{
    return m_global_data.with([&](auto& global_data) {
        // Are we returning a user page?
        for (auto& region : global_data.physical_regions) {
            if (!region->contains(paddr))
                continue;

            region->return_page(paddr);
            --global_data.system_memory_info.physical_pages_used;

            // Always return pages to the uncommitted pool. Pages that were
            // committed and allocated are only freed upon request. Once
            // returned there is no guarantee being able to get them back.
            ++global_data.system_memory_info.physical_pages_uncommitted;
            return;
        }
        PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
    });
}

RefPtr<PhysicalPage> MemoryManager::find_free_physical_page(bool committed)
{
    RefPtr<PhysicalPage> page;
    m_global_data.with([&](auto& global_data) {
        if (committed) {
            // Draw from the committed pages pool. We should always have these pages available
            VERIFY(global_data.system_memory_info.physical_pages_committed > 0);
            global_data.system_memory_info.physical_pages_committed--;
        } else {
            // We need to make sure we don't touch pages that we have committed to
            if (global_data.system_memory_info.physical_pages_uncommitted == 0)
                return;
            global_data.system_memory_info.physical_pages_uncommitted--;
        }
        for (auto& region : global_data.physical_regions) {
            page = region->take_free_page();
            if (!page.is_null()) {
                ++global_data.system_memory_info.physical_pages_used;
                break;
            }
        }
    });

    if (page.is_null())
        dbgln("MM: couldn't find free physical page. Continuing...");

    return page;
}

NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
{
    auto page = find_free_physical_page(true);
    VERIFY(page);
    if (should_zero_fill == ShouldZeroFill::Yes) {
        InterruptDisabler disabler;
        auto* ptr = quickmap_page(*page);
        memset(ptr, 0, PAGE_SIZE);
        unquickmap_page();
    }
    return page.release_nonnull();
}

ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
{
    return m_global_data.with([&](auto&) -> ErrorOr<NonnullRefPtr<PhysicalPage>> {
        auto page = find_free_physical_page(false);
        bool purged_pages = false;

        if (!page) {
            // We didn't have a single free physical page. Let's try to free something up!
            // First, we look for a purgeable VMObject in the volatile state.
            for_each_vmobject([&](auto& vmobject) {
                if (!vmobject.is_anonymous())
                    return IterationDecision::Continue;
                auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
                if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
                    return IterationDecision::Continue;
                if (auto purged_page_count = anonymous_vmobject.purge()) {
                    dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
                    page = find_free_physical_page(false);
                    purged_pages = true;
                    VERIFY(page);
                    return IterationDecision::Break;
                }
                return IterationDecision::Continue;
            });
        }
        if (!page) {
            // Second, we look for a file-backed VMObject with clean pages.
            for_each_vmobject([&](auto& vmobject) {
                if (!vmobject.is_inode())
                    return IterationDecision::Continue;
                auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
                if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) {
                    dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count);
                    page = find_free_physical_page(false);
                    VERIFY(page);
                    return IterationDecision::Break;
                }
                return IterationDecision::Continue;
            });
        }
        if (!page) {
            dmesgln("MM: no physical pages available");
            return ENOMEM;
        }

        if (should_zero_fill == ShouldZeroFill::Yes) {
            auto* ptr = quickmap_page(*page);
            memset(ptr, 0, PAGE_SIZE);
            unquickmap_page();
        }

        if (did_purge)
            *did_purge = purged_pages;
        return page.release_nonnull();
    });
}

ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
{
    VERIFY(!(size % PAGE_SIZE));
    size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));

    auto physical_pages = TRY(m_global_data.with([&](auto& global_data) -> ErrorOr<Vector<NonnullRefPtr<PhysicalPage>>> {
        // We need to make sure we don't touch pages that we have committed to
        if (global_data.system_memory_info.physical_pages_uncommitted < page_count)
            return ENOMEM;

        for (auto& physical_region : global_data.physical_regions) {
            auto physical_pages = physical_region->take_contiguous_free_pages(page_count);
            if (!physical_pages.is_empty()) {
                global_data.system_memory_info.physical_pages_uncommitted -= page_count;
                global_data.system_memory_info.physical_pages_used += page_count;
                return physical_pages;
            }
        }
        dmesgln("MM: no contiguous physical pages available");
        return ENOMEM;
    }));

    {
        auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0]->paddr(), PAGE_SIZE * page_count, {}, Region::Access::Read | Region::Access::Write));
        memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
    }
    return physical_pages;
}

void MemoryManager::enter_process_address_space(Process& process)
{
    process.address_space().with([](auto& space) {
        enter_address_space(*space);
    });
}

void MemoryManager::enter_address_space(AddressSpace& space)
{
    auto* current_thread = Thread::current();
    VERIFY(current_thread != nullptr);
    activate_page_directory(space.page_directory(), current_thread);
}

void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
{
    Processor::flush_tlb_local(vaddr, page_count);
}

void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
{
    Processor::flush_tlb(page_directory, vaddr, page_count);
}

PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
{
    VERIFY_INTERRUPTS_DISABLED();

    VirtualAddress vaddr(KERNEL_QUICKMAP_PD_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
    size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;

    auto& pte = boot_pd_kernel_pt1023[pte_index];
    auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
    if (pte.physical_page_base() != pd_paddr.get()) {
        pte.set_physical_page_base(pd_paddr.get());
        pte.set_present(true);
        pte.set_writable(true);
        pte.set_user_allowed(false);
        flush_tlb_local(vaddr);
    }
    return (PageDirectoryEntry*)vaddr.get();
}

PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
{
    VERIFY_INTERRUPTS_DISABLED();

    VirtualAddress vaddr(KERNEL_QUICKMAP_PT_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
    size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;

    auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_index];
    if (pte.physical_page_base() != pt_paddr.get()) {
        pte.set_physical_page_base(pt_paddr.get());
        pte.set_present(true);
        pte.set_writable(true);
        pte.set_user_allowed(false);
        flush_tlb_local(vaddr);
    }
    return (PageTableEntry*)vaddr.get();
}

u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
{
    VERIFY_INTERRUPTS_DISABLED();
    auto& mm_data = get_data();
    mm_data.m_quickmap_previous_interrupts_state = mm_data.m_quickmap_in_use.lock();

    VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
    u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;

    auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
    if (pte.physical_page_base() != physical_address.get()) {
        pte.set_physical_page_base(physical_address.get());
        pte.set_present(true);
        pte.set_writable(true);
        pte.set_user_allowed(false);
        flush_tlb_local(vaddr);
    }
    return vaddr.as_ptr();
}

void MemoryManager::unquickmap_page()
{
    VERIFY_INTERRUPTS_DISABLED();
    auto& mm_data = get_data();
    VERIFY(mm_data.m_quickmap_in_use.is_locked());
    VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
    u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
    auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
    pte.clear();
    flush_tlb_local(vaddr);
    mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_previous_interrupts_state);
}

bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
{
    if (!is_user_address(vaddr))
        return false;

    auto* region = find_user_region_from_vaddr(space, vaddr);
    return region && region->is_user() && region->is_stack();
}

void MemoryManager::unregister_kernel_region(Region& region)
{
    VERIFY(region.is_kernel());
    m_global_data.with([&](auto& global_data) { global_data.region_tree.remove(region); });
}

void MemoryManager::dump_kernel_regions()
{
    dbgln("Kernel regions:");
    char const* addr_padding = "        ";
    dbgln("BEGIN{}         END{}        SIZE{}       ACCESS NAME",
        addr_padding, addr_padding, addr_padding);
    m_global_data.with([&](auto& global_data) {
        for (auto& region : global_data.region_tree.regions()) {
            dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
                region.vaddr().get(),
                region.vaddr().offset(region.size() - 1).get(),
                region.size(),
                region.is_readable() ? 'R' : ' ',
                region.is_writable() ? 'W' : ' ',
                region.is_executable() ? 'X' : ' ',
                region.is_shared() ? 'S' : ' ',
                region.is_stack() ? 'T' : ' ',
                region.is_syscall_region() ? 'C' : ' ',
                region.name());
        }
    });
}

void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
{
    SpinlockLocker page_lock(kernel_page_directory().get_lock());
    auto* pte = ensure_pte(kernel_page_directory(), vaddr);
    VERIFY(pte);
    if (pte->is_writable() == writable)
        return;
    pte->set_writable(writable);
    flush_tlb(&kernel_page_directory(), vaddr);
}

CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
{
    if (m_page_count)
        MM.uncommit_physical_pages({}, m_page_count);
}

NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
{
    VERIFY(m_page_count > 0);
    --m_page_count;
    return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
}

void CommittedPhysicalPageSet::uncommit_one()
{
    VERIFY(m_page_count > 0);
    --m_page_count;
    MM.uncommit_physical_pages({}, 1);
}

void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
{
    auto* quickmapped_page = quickmap_page(physical_page);
    memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
    unquickmap_page();
}

ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
{
    auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
    auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
    Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
    region->m_range = range;
    TRY(region->map(MM.kernel_page_directory()));
    return region;
}

ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
{
    auto region = TRY(Region::create_unbacked());
    TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment); }));
    return region;
}

MemoryManager::SystemMemoryInfo MemoryManager::get_system_memory_info()
{
    return m_global_data.with([&](auto& global_data) {
        auto physical_pages_unused = global_data.system_memory_info.physical_pages_committed + global_data.system_memory_info.physical_pages_uncommitted;
        VERIFY(global_data.system_memory_info.physical_pages == (global_data.system_memory_info.physical_pages_used + physical_pages_unused));
        return global_data.system_memory_info;
    });
}
}