summaryrefslogtreecommitdiff
path: root/Kernel/Devices/Storage/NVMe/NVMeController.cpp
blob: 239dc17c01c9225ea7e9166909bee69c6b91dd4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
 * Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
 * Copyright (c) 2022, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Format.h>
#include <AK/Types.h>
#include <Kernel/Arch/Delay.h>
#include <Kernel/Arch/Interrupts.h>
#include <Kernel/Arch/SafeMem.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Devices/Device.h>
#include <Kernel/Devices/Storage/NVMe/NVMeController.h>
#include <Kernel/Devices/Storage/StorageManagement.h>
#include <Kernel/Library/LockRefPtr.h>
#include <Kernel/Sections.h>

namespace Kernel {

UNMAP_AFTER_INIT ErrorOr<NonnullRefPtr<NVMeController>> NVMeController::try_initialize(Kernel::PCI::DeviceIdentifier const& device_identifier, bool is_queue_polled)
{
    auto controller = TRY(adopt_nonnull_ref_or_enomem(new NVMeController(device_identifier, StorageManagement::generate_relative_nvme_controller_id({}))));
    TRY(controller->initialize(is_queue_polled));
    return controller;
}

UNMAP_AFTER_INIT NVMeController::NVMeController(const PCI::DeviceIdentifier& device_identifier, u32 hardware_relative_controller_id)
    : PCI::Device(const_cast<PCI::DeviceIdentifier&>(device_identifier))
    , StorageController(hardware_relative_controller_id)
{
}

UNMAP_AFTER_INIT ErrorOr<void> NVMeController::initialize(bool is_queue_polled)
{
    // Nr of queues = one queue per core
    auto nr_of_queues = Processor::count();
    auto queue_type = is_queue_polled ? QueueType::Polled : QueueType::IRQ;

    PCI::enable_memory_space(device_identifier());
    PCI::enable_bus_mastering(device_identifier());
    m_bar = PCI::get_BAR0(device_identifier()) & PCI::bar_address_mask;
    static_assert(sizeof(ControllerRegister) == REG_SQ0TDBL_START);
    static_assert(sizeof(NVMeSubmission) == (1 << SQ_WIDTH));

    // Map only until doorbell register for the controller
    // Queues will individually map the doorbell register respectively
    m_controller_regs = TRY(Memory::map_typed_writable<ControllerRegister volatile>(PhysicalAddress(m_bar)));

    auto caps = m_controller_regs->cap;
    m_ready_timeout = Duration::from_milliseconds((CAP_TO(caps) + 1) * 500); // CAP.TO is in 500ms units

    calculate_doorbell_stride();
    // IO queues + 1 admin queue
    m_irq_type = TRY(reserve_irqs(nr_of_queues + 1, true));

    TRY(create_admin_queue(queue_type));
    VERIFY(m_admin_queue_ready == true);

    VERIFY(IO_QUEUE_SIZE < MQES(caps));
    dbgln_if(NVME_DEBUG, "NVMe: IO queue depth is: {}", IO_QUEUE_SIZE);

    // Create an IO queue per core
    for (u32 cpuid = 0; cpuid < nr_of_queues; ++cpuid) {
        // qid is zero is used for admin queue
        TRY(create_io_queue(cpuid + 1, queue_type));
    }
    TRY(identify_and_init_namespaces());
    return {};
}

bool NVMeController::wait_for_ready(bool expected_ready_bit_value)
{
    constexpr size_t one_ms_io_delay = 1000;
    auto wait_iterations = m_ready_timeout.to_milliseconds();

    u32 expected_rdy = expected_ready_bit_value ? 1 : 0;
    while (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
        microseconds_delay(one_ms_io_delay);

        if (--wait_iterations == 0) {
            if (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
                dbgln_if(NVME_DEBUG, "NVMEController: CSTS.RDY still not set to {} after {} ms", expected_rdy, m_ready_timeout.to_milliseconds());
                return false;
            }
            break;
        }
    }
    return true;
}

ErrorOr<void> NVMeController::reset_controller()
{
    if ((m_controller_regs->cc & (1 << CC_EN_BIT)) != 0) {
        // If the EN bit is already set, we need to wait
        // until the RDY bit is 1, otherwise the behavior is undefined
        if (!wait_for_ready(true))
            return Error::from_errno(ETIMEDOUT);
    }

    auto cc = m_controller_regs->cc;

    cc = cc & ~(1 << CC_EN_BIT);

    m_controller_regs->cc = cc;

    full_memory_barrier();

    // Wait until the RDY bit is cleared
    if (!wait_for_ready(false))
        return Error::from_errno(ETIMEDOUT);

    return {};
}

ErrorOr<void> NVMeController::start_controller()
{
    if (!(m_controller_regs->cc & (1 << CC_EN_BIT))) {
        // If the EN bit is not already set, we need to wait
        // until the RDY bit is 0, otherwise the behavior is undefined
        if (!wait_for_ready(false))
            return Error::from_errno(ETIMEDOUT);
    }

    auto cc = m_controller_regs->cc;

    cc = cc | (1 << CC_EN_BIT);
    cc = cc | (CQ_WIDTH << CC_IOCQES_BIT);
    cc = cc | (SQ_WIDTH << CC_IOSQES_BIT);

    m_controller_regs->cc = cc;

    full_memory_barrier();

    // Wait until the RDY bit is set
    if (!wait_for_ready(true))
        return Error::from_errno(ETIMEDOUT);

    return {};
}

UNMAP_AFTER_INIT u32 NVMeController::get_admin_q_dept()
{
    u32 aqa = m_controller_regs->aqa;
    // Queue depth is 0 based
    u32 q_depth = min(ACQ_SIZE(aqa), ASQ_SIZE(aqa)) + 1;
    dbgln_if(NVME_DEBUG, "NVMe: Admin queue depth is {}", q_depth);
    return q_depth;
}

UNMAP_AFTER_INIT ErrorOr<void> NVMeController::identify_and_init_namespaces()
{

    RefPtr<Memory::PhysicalPage> prp_dma_buffer;
    OwnPtr<Memory::Region> prp_dma_region;
    auto namespace_data_struct = TRY(ByteBuffer::create_zeroed(NVMe_IDENTIFY_SIZE));
    u32 active_namespace_list[NVMe_IDENTIFY_SIZE / sizeof(u32)];

    {
        auto buffer = TRY(MM.allocate_dma_buffer_page("Identify PRP"sv, Memory::Region::Access::ReadWrite, prp_dma_buffer));
        prp_dma_region = move(buffer);
    }

    // Get the active namespace
    {
        NVMeSubmission sub {};
        u16 status = 0;
        sub.op = OP_ADMIN_IDENTIFY;
        sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
        sub.identify.cns = NVMe_CNS_ID_ACTIVE_NS & 0xff;
        status = submit_admin_command(sub, true);
        if (status) {
            dmesgln_pci(*this, "Failed to identify active namespace command");
            return EFAULT;
        }
        if (void* fault_at; !safe_memcpy(active_namespace_list, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
            return EFAULT;
        }
    }
    // Get the NAMESPACE attributes
    {
        NVMeSubmission sub {};
        IdentifyNamespace id_ns {};
        u16 status = 0;
        for (auto nsid : active_namespace_list) {
            memset(prp_dma_region->vaddr().as_ptr(), 0, NVMe_IDENTIFY_SIZE);
            // Invalid NS
            if (nsid == 0)
                break;
            sub.op = OP_ADMIN_IDENTIFY;
            sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
            sub.identify.cns = NVMe_CNS_ID_NS & 0xff;
            sub.identify.nsid = nsid;
            status = submit_admin_command(sub, true);
            if (status) {
                dmesgln_pci(*this, "Failed identify namespace with nsid {}", nsid);
                return EFAULT;
            }
            static_assert(sizeof(IdentifyNamespace) == NVMe_IDENTIFY_SIZE);
            if (void* fault_at; !safe_memcpy(&id_ns, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
                return EFAULT;
            }
            auto val = get_ns_features(id_ns);
            auto block_counts = val.get<0>();
            auto block_size = 1 << val.get<1>();

            dbgln_if(NVME_DEBUG, "NVMe: Block count is {} and Block size is {}", block_counts, block_size);

            m_namespaces.append(TRY(NVMeNameSpace::try_create(*this, m_queues, nsid, block_counts, block_size)));
            m_device_count++;
            dbgln_if(NVME_DEBUG, "NVMe: Initialized namespace with NSID: {}", nsid);
        }
    }
    return {};
}

UNMAP_AFTER_INIT Tuple<u64, u8> NVMeController::get_ns_features(IdentifyNamespace& identify_data_struct)
{
    auto flbas = identify_data_struct.flbas & FLBA_SIZE_MASK;
    auto namespace_size = identify_data_struct.nsze;
    auto lba_format = identify_data_struct.lbaf[flbas];

    auto lba_size = (lba_format & LBA_SIZE_MASK) >> 16;
    return Tuple<u64, u8>(namespace_size, lba_size);
}

LockRefPtr<StorageDevice> NVMeController::device(u32 index) const
{
    return m_namespaces.at(index);
}

size_t NVMeController::devices_count() const
{
    return m_device_count;
}

ErrorOr<void> NVMeController::reset()
{
    TRY(reset_controller());
    TRY(start_controller());
    return {};
}

ErrorOr<void> NVMeController::shutdown()
{
    return Error::from_errno(ENOTIMPL);
}

void NVMeController::complete_current_request([[maybe_unused]] AsyncDeviceRequest::RequestResult result)
{
    VERIFY_NOT_REACHED();
}

UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_admin_queue(QueueType queue_type)
{
    auto qdepth = get_admin_q_dept();
    OwnPtr<Memory::Region> cq_dma_region;
    Vector<NonnullRefPtr<Memory::PhysicalPage>> cq_dma_pages;
    OwnPtr<Memory::Region> sq_dma_region;
    Vector<NonnullRefPtr<Memory::PhysicalPage>> sq_dma_pages;
    auto cq_size = round_up_to_power_of_two(CQ_SIZE(qdepth), 4096);
    auto sq_size = round_up_to_power_of_two(SQ_SIZE(qdepth), 4096);
    auto maybe_error = reset_controller();
    if (maybe_error.is_error()) {
        dmesgln_pci(*this, "Failed to reset the NVMe controller");
        return maybe_error;
    }
    {
        auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "Admin CQ queue"sv, Memory::Region::Access::ReadWrite, cq_dma_pages));
        cq_dma_region = move(buffer);
    }

    // Phase bit is important to determine completion, so zero out the space
    // so that we don't get any garbage phase bit value
    memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);

    {
        auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "Admin SQ queue"sv, Memory::Region::Access::ReadWrite, sq_dma_pages));
        sq_dma_region = move(buffer);
    }
    auto doorbell_regs = TRY(Memory::map_typed_writable<DoorbellRegister volatile>(PhysicalAddress(m_bar + REG_SQ0TDBL_START)));

    m_controller_regs->acq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first()->paddr().as_ptr()));
    m_controller_regs->asq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first()->paddr().as_ptr()));

    auto irq = TRY(allocate_irq(0)); // Admin queue always uses the 0th index when using MSIx

    maybe_error = start_controller();
    if (maybe_error.is_error()) {
        dmesgln_pci(*this, "Failed to restart the NVMe controller");
        return maybe_error;
    }
    set_admin_queue_ready_flag();
    m_admin_queue = TRY(NVMeQueue::try_create(*this, 0, irq, qdepth, move(cq_dma_region), move(sq_dma_region), move(doorbell_regs), queue_type));

    dbgln_if(NVME_DEBUG, "NVMe: Admin queue created");
    return {};
}

UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_io_queue(u8 qid, QueueType queue_type)
{
    OwnPtr<Memory::Region> cq_dma_region;
    Vector<NonnullRefPtr<Memory::PhysicalPage>> cq_dma_pages;
    OwnPtr<Memory::Region> sq_dma_region;
    Vector<NonnullRefPtr<Memory::PhysicalPage>> sq_dma_pages;
    auto cq_size = round_up_to_power_of_two(CQ_SIZE(IO_QUEUE_SIZE), 4096);
    auto sq_size = round_up_to_power_of_two(SQ_SIZE(IO_QUEUE_SIZE), 4096);

    {
        auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "IO CQ queue"sv, Memory::Region::Access::ReadWrite, cq_dma_pages));
        cq_dma_region = move(buffer);
    }

    // Phase bit is important to determine completion, so zero out the space
    // so that we don't get any garbage phase bit value
    memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);

    {
        auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "IO SQ queue"sv, Memory::Region::Access::ReadWrite, sq_dma_pages));
        sq_dma_region = move(buffer);
    }

    {
        NVMeSubmission sub {};
        sub.op = OP_ADMIN_CREATE_COMPLETION_QUEUE;
        sub.create_cq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first()->paddr().as_ptr()));
        sub.create_cq.cqid = qid;
        // The queue size is 0 based
        sub.create_cq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
        auto flags = (queue_type == QueueType::IRQ) ? QUEUE_IRQ_ENABLED : QUEUE_IRQ_DISABLED;
        flags |= QUEUE_PHY_CONTIGUOUS;
        // When using MSIx interrupts, qid is used as an index into the interrupt table
        sub.create_cq.irq_vector = (m_irq_type == PCI::InterruptType::PIN) ? 0 : qid;
        sub.create_cq.cq_flags = AK::convert_between_host_and_little_endian(flags & 0xFFFF);
        submit_admin_command(sub, true);
    }
    {
        NVMeSubmission sub {};
        sub.op = OP_ADMIN_CREATE_SUBMISSION_QUEUE;
        sub.create_sq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first()->paddr().as_ptr()));
        sub.create_sq.sqid = qid;
        // The queue size is 0 based
        sub.create_sq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
        auto flags = QUEUE_PHY_CONTIGUOUS;
        sub.create_sq.cqid = qid;
        sub.create_sq.sq_flags = AK::convert_between_host_and_little_endian(flags);
        submit_admin_command(sub, true);
    }

    auto queue_doorbell_offset = REG_SQ0TDBL_START + ((2 * qid) * (4 << m_dbl_stride));
    auto doorbell_regs = TRY(Memory::map_typed_writable<DoorbellRegister volatile>(PhysicalAddress(m_bar + queue_doorbell_offset)));
    auto irq = TRY(allocate_irq(qid));

    m_queues.append(TRY(NVMeQueue::try_create(*this, qid, irq, IO_QUEUE_SIZE, move(cq_dma_region), move(sq_dma_region), move(doorbell_regs), queue_type)));
    dbgln_if(NVME_DEBUG, "NVMe: Created IO Queue with QID{}", m_queues.size());
    return {};
}
}