summaryrefslogtreecommitdiff
path: root/Kernel/Bus/VirtIO/Device.cpp
blob: fda0d5206264d0655bf4420266a859103f73f30c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/*
 * Copyright (c) 2021, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Bus/PCI/IDs.h>
#include <Kernel/Bus/VirtIO/Console.h>
#include <Kernel/Bus/VirtIO/Device.h>
#include <Kernel/Bus/VirtIO/RNG.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Sections.h>

namespace Kernel::VirtIO {

UNMAP_AFTER_INIT void detect()
{
    if (kernel_command_line().disable_virtio())
        return;
    MUST(PCI::enumerate([&](PCI::DeviceIdentifier const& device_identifier) {
        if (device_identifier.hardware_id().is_null())
            return;
        // TODO: We should also be checking that the device_id is in between 0x1000 - 0x107F inclusive
        if (device_identifier.hardware_id().vendor_id != PCI::VendorID::VirtIO)
            return;
        switch (device_identifier.hardware_id().device_id) {
        case PCI::DeviceID::VirtIOConsole: {
            auto& console = Console::must_create(device_identifier).leak_ref();
            MUST(console.initialize_virtio_resources());
            break;
        }
        case PCI::DeviceID::VirtIOEntropy: {
            auto& rng = RNG::must_create(device_identifier).leak_ref();
            MUST(rng.initialize_virtio_resources());
            break;
        }
        case PCI::DeviceID::VirtIOGPU: {
            // This should have been initialized by the graphics subsystem
            break;
        }
        default:
            dbgln_if(VIRTIO_DEBUG, "VirtIO: Unknown VirtIO device with ID: {}", device_identifier.hardware_id().device_id);
            break;
        }
    }));
}

static StringView determine_device_class(PCI::DeviceIdentifier const& device_identifier)
{
    if (device_identifier.revision_id().value() == 0) {
        // Note: If the device is a legacy (or transitional) device, therefore,
        // probe the subsystem ID in the PCI header and figure out the
        auto subsystem_device_id = device_identifier.subsystem_id().value();
        switch (subsystem_device_id) {
        case 1:
            return "VirtIONetAdapter"sv;
        case 2:
            return "VirtIOBlockDevice"sv;
        case 3:
            return "VirtIOConsole"sv;
        case 4:
            return "VirtIORNG"sv;
        default:
            dbgln("VirtIO: Unknown subsystem_device_id {}", subsystem_device_id);
            VERIFY_NOT_REACHED();
        }
    }

    auto id = device_identifier.hardware_id();
    VERIFY(id.vendor_id == PCI::VendorID::VirtIO);
    switch (id.device_id) {
    case PCI::DeviceID::VirtIONetAdapter:
        return "VirtIONetAdapter"sv;
    case PCI::DeviceID::VirtIOBlockDevice:
        return "VirtIOBlockDevice"sv;
    case PCI::DeviceID::VirtIOConsole:
        return "VirtIOConsole"sv;
    case PCI::DeviceID::VirtIOEntropy:
        return "VirtIORNG"sv;
    case PCI::DeviceID::VirtIOGPU:
        return "VirtIOGPU"sv;
    default:
        dbgln("VirtIO: Unknown device_id {}", id.vendor_id);
        VERIFY_NOT_REACHED();
    }
}

UNMAP_AFTER_INIT ErrorOr<void> Device::initialize_virtio_resources()
{
    enable_bus_mastering(device_identifier());

    auto capabilities = device_identifier().capabilities();
    for (auto& capability : capabilities) {
        if (capability.id().value() == PCI::Capabilities::ID::VendorSpecific) {
            // We have a virtio_pci_cap
            Configuration config {};
            auto raw_config_type = capability.read8(0x3);
            // NOTE: The VirtIO specification allows iteration of configurations
            // through a special PCI capbility structure with the VIRTIO_PCI_CAP_PCI_CFG tag:
            //
            // "Each structure can be mapped by a Base Address register (BAR) belonging to the function, or accessed via
            // the special VIRTIO_PCI_CAP_PCI_CFG field in the PCI configuration space"
            //
            // "The VIRTIO_PCI_CAP_PCI_CFG capability creates an alternative (and likely suboptimal) access method
            // to the common configuration, notification, ISR and device-specific configuration regions."
            //
            // Also, it is *very* likely to see this PCI capability as the first vendor-specific capbility of a certain PCI function,
            // but this is not guaranteed by the VirtIO specification.
            // Therefore, ignore this type of configuration as this is not needed by our implementation currently.
            if (raw_config_type == static_cast<u8>(ConfigurationType::PCICapabilitiesAccess))
                continue;
            if (raw_config_type < static_cast<u8>(ConfigurationType::Common) || raw_config_type > static_cast<u8>(ConfigurationType::PCICapabilitiesAccess)) {
                dbgln("{}: Unknown capability configuration type: {}", m_class_name, raw_config_type);
                return Error::from_errno(ENXIO);
            }
            config.cfg_type = static_cast<ConfigurationType>(raw_config_type);
            auto cap_length = capability.read8(0x2);
            if (cap_length < 0x10) {
                dbgln("{}: Unexpected capability size: {}", m_class_name, cap_length);
                break;
            }
            config.bar = capability.read8(0x4);
            if (config.bar > 0x5) {
                dbgln("{}: Unexpected capability bar value: {}", m_class_name, config.bar);
                break;
            }
            config.offset = capability.read32(0x8);
            config.length = capability.read32(0xc);
            // NOTE: Configuration length of zero is an invalid configuration, or at the very least a configuration
            // type we don't know how to handle correctly...
            // The VIRTIO_PCI_CAP_PCI_CFG configuration structure has length of 0
            // but because we ignore that type and all other types should have a length
            // greater than 0, we should ignore any other configuration in case this condition is not met.
            if (config.length == 0) {
                dbgln("{}: Found configuration {}, with invalid length of 0", m_class_name, (u32)config.cfg_type);
                continue;
            }
            dbgln_if(VIRTIO_DEBUG, "{}: Found configuration {}, bar: {}, offset: {}, length: {}", m_class_name, (u32)config.cfg_type, config.bar, config.offset, config.length);
            if (config.cfg_type == ConfigurationType::Common)
                m_use_mmio = true;
            else if (config.cfg_type == ConfigurationType::Notify)
                m_notify_multiplier = capability.read32(0x10);

            m_configs.append(config);
        }
    }

    if (m_use_mmio) {
        for (auto& cfg : m_configs) {
            auto mapping_io_window = TRY(IOWindow::create_for_pci_device_bar(device_identifier(), static_cast<PCI::HeaderType0BaseRegister>(cfg.bar)));
            m_register_bases[cfg.bar] = move(mapping_io_window);
        }
        m_common_cfg = TRY(get_config(ConfigurationType::Common, 0));
        m_notify_cfg = TRY(get_config(ConfigurationType::Notify, 0));
        m_isr_cfg = TRY(get_config(ConfigurationType::ISR, 0));
    } else {
        auto mapping_io_window = TRY(IOWindow::create_for_pci_device_bar(device_identifier(), PCI::HeaderType0BaseRegister::BAR0));
        m_register_bases[0] = move(mapping_io_window);
    }

    // Note: We enable interrupts at least after the m_register_bases[0] ptr is
    // assigned with an IOWindow, to ensure that in case of getting an interrupt
    // we can access registers from that IO window range.
    PCI::enable_interrupt_line(device_identifier());
    enable_irq();

    reset_device();
    set_status_bit(DEVICE_STATUS_ACKNOWLEDGE);

    set_status_bit(DEVICE_STATUS_DRIVER);
    return {};
}

UNMAP_AFTER_INIT VirtIO::Device::Device(PCI::DeviceIdentifier const& device_identifier)
    : PCI::Device(const_cast<PCI::DeviceIdentifier&>(device_identifier))
    , IRQHandler(device_identifier.interrupt_line().value())
    , m_class_name(VirtIO::determine_device_class(device_identifier))
{
    dbgln("{}: Found @ {}", m_class_name, device_identifier.address());
}

void Device::notify_queue(u16 queue_index)
{
    dbgln_if(VIRTIO_DEBUG, "{}: notifying about queue change at idx: {}", m_class_name, queue_index);
    if (!m_notify_cfg)
        base_io_window().write16(REG_QUEUE_NOTIFY, queue_index);
    else
        config_write16(*m_notify_cfg, get_queue(queue_index).notify_offset() * m_notify_multiplier, queue_index);
}

auto Device::mapping_for_bar(u8 bar) -> IOWindow&
{
    VERIFY(m_use_mmio);
    VERIFY(m_register_bases[bar]);
    return *m_register_bases[bar];
}

u8 Device::config_read8(Configuration const& config, u32 offset)
{
    return mapping_for_bar(config.bar).read8(config.offset + offset);
}

u16 Device::config_read16(Configuration const& config, u32 offset)
{
    return mapping_for_bar(config.bar).read16(config.offset + offset);
}

u32 Device::config_read32(Configuration const& config, u32 offset)
{
    return mapping_for_bar(config.bar).read32(config.offset + offset);
}

void Device::config_write8(Configuration const& config, u32 offset, u8 value)
{
    mapping_for_bar(config.bar).write8(config.offset + offset, value);
}

void Device::config_write16(Configuration const& config, u32 offset, u16 value)
{
    mapping_for_bar(config.bar).write16(config.offset + offset, value);
}

void Device::config_write32(Configuration const& config, u32 offset, u32 value)
{
    mapping_for_bar(config.bar).write32(config.offset + offset, value);
}

void Device::config_write64(Configuration const& config, u32 offset, u64 value)
{
    mapping_for_bar(config.bar).write32(config.offset + offset, (u32)(value & 0xFFFFFFFF));
    mapping_for_bar(config.bar).write32(config.offset + offset + 4, (u32)(value >> 32));
}

u8 Device::read_status_bits()
{
    if (!m_common_cfg)
        return base_io_window().read8(REG_DEVICE_STATUS);
    return config_read8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS);
}

void Device::mask_status_bits(u8 status_mask)
{
    m_status &= status_mask;
    if (!m_common_cfg)
        base_io_window().write8(REG_DEVICE_STATUS, m_status);
    else
        config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, m_status);
}

void Device::set_status_bit(u8 status_bit)
{
    m_status |= status_bit;
    if (!m_common_cfg)
        base_io_window().write8(REG_DEVICE_STATUS, m_status);
    else
        config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, m_status);
}

u64 Device::get_device_features()
{
    if (!m_common_cfg)
        return base_io_window().read32(REG_DEVICE_FEATURES);
    config_write32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE_SELECT, 0);
    auto lower_bits = config_read32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE);
    config_write32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE_SELECT, 1);
    u64 upper_bits = (u64)config_read32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE) << 32;
    return upper_bits | lower_bits;
}

IOWindow& Device::base_io_window()
{
    VERIFY(m_register_bases[0]);
    return *m_register_bases[0];
}

bool Device::accept_device_features(u64 device_features, u64 accepted_features)
{
    VERIFY(!m_did_accept_features);
    m_did_accept_features = true;

    if (is_feature_set(device_features, VIRTIO_F_VERSION_1)) {
        accepted_features |= VIRTIO_F_VERSION_1; // let the device know were not a legacy driver
    }

    if (is_feature_set(device_features, VIRTIO_F_RING_PACKED)) {
        dbgln_if(VIRTIO_DEBUG, "{}: packed queues not yet supported", m_class_name);
        accepted_features &= ~(VIRTIO_F_RING_PACKED);
    }

    // TODO: implement indirect descriptors to allow queue_size buffers instead of buffers totalling (PAGE_SIZE * queue_size) bytes
    if (is_feature_set(device_features, VIRTIO_F_INDIRECT_DESC)) {
        // accepted_features |= VIRTIO_F_INDIRECT_DESC;
    }

    if (is_feature_set(device_features, VIRTIO_F_IN_ORDER)) {
        accepted_features |= VIRTIO_F_IN_ORDER;
    }

    dbgln_if(VIRTIO_DEBUG, "{}: Device features: {}", m_class_name, device_features);
    dbgln_if(VIRTIO_DEBUG, "{}: Accepted features: {}", m_class_name, accepted_features);

    if (!m_common_cfg) {
        base_io_window().write32(REG_GUEST_FEATURES, accepted_features);
    } else {
        config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE_SELECT, 0);
        config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE, accepted_features);
        config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE_SELECT, 1);
        config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE, accepted_features >> 32);
    }
    set_status_bit(DEVICE_STATUS_FEATURES_OK);
    m_status = read_status_bits();
    if (!(m_status & DEVICE_STATUS_FEATURES_OK)) {
        set_status_bit(DEVICE_STATUS_FAILED);
        dbgln("{}: Features not accepted by host!", m_class_name);
        return false;
    }

    m_accepted_features = accepted_features;
    dbgln_if(VIRTIO_DEBUG, "{}: Features accepted by host", m_class_name);
    return true;
}

void Device::reset_device()
{
    dbgln_if(VIRTIO_DEBUG, "{}: Reset device", m_class_name);
    if (!m_common_cfg) {
        mask_status_bits(0);
        while (read_status_bits() != 0) {
            // TODO: delay a bit?
        }
        return;
    }
    config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, 0);
    while (config_read8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS) != 0) {
        // TODO: delay a bit?
    }
}

bool Device::setup_queue(u16 queue_index)
{
    if (!m_common_cfg)
        return false;

    config_write16(*m_common_cfg, COMMON_CFG_QUEUE_SELECT, queue_index);
    u16 queue_size = config_read16(*m_common_cfg, COMMON_CFG_QUEUE_SIZE);
    if (queue_size == 0) {
        dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] is unavailable!", m_class_name, queue_index);
        return true;
    }

    u16 queue_notify_offset = config_read16(*m_common_cfg, COMMON_CFG_QUEUE_NOTIFY_OFF);

    auto queue_or_error = Queue::try_create(queue_size, queue_notify_offset);
    if (queue_or_error.is_error())
        return false;
    auto queue = queue_or_error.release_value();

    config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DESC, queue->descriptor_area().get());
    config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DRIVER, queue->driver_area().get());
    config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DEVICE, queue->device_area().get());

    dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] configured with size: {}", m_class_name, queue_index, queue_size);

    m_queues.append(move(queue));
    return true;
}

bool Device::activate_queue(u16 queue_index)
{
    if (!m_common_cfg)
        return false;

    config_write16(*m_common_cfg, COMMON_CFG_QUEUE_SELECT, queue_index);
    config_write16(*m_common_cfg, COMMON_CFG_QUEUE_ENABLE, true);

    dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] activated", m_class_name, queue_index);
    return true;
}

bool Device::setup_queues(u16 requested_queue_count)
{
    VERIFY(!m_did_setup_queues);
    m_did_setup_queues = true;

    if (m_common_cfg) {
        auto maximum_queue_count = config_read16(*m_common_cfg, COMMON_CFG_NUM_QUEUES);
        if (requested_queue_count == 0) {
            m_queue_count = maximum_queue_count;
        } else if (requested_queue_count > maximum_queue_count) {
            dbgln("{}: {} queues requested but only {} available!", m_class_name, m_queue_count, maximum_queue_count);
            return false;
        } else {
            m_queue_count = requested_queue_count;
        }
    } else {
        m_queue_count = requested_queue_count;
        dbgln("{}: device's available queue count could not be determined!", m_class_name);
    }

    dbgln_if(VIRTIO_DEBUG, "{}: Setting up {} queues", m_class_name, m_queue_count);
    for (u16 i = 0; i < m_queue_count; i++) {
        if (!setup_queue(i))
            return false;
    }
    for (u16 i = 0; i < m_queue_count; i++) { // Queues can only be activated *after* all others queues were also configured
        if (!activate_queue(i))
            return false;
    }
    return true;
}

void Device::finish_init()
{
    VERIFY(m_did_accept_features);                 // ensure features were negotiated
    VERIFY(m_did_setup_queues);                    // ensure queues were set-up
    VERIFY(!(m_status & DEVICE_STATUS_DRIVER_OK)); // ensure we didn't already finish the initialization

    set_status_bit(DEVICE_STATUS_DRIVER_OK);
    dbgln_if(VIRTIO_DEBUG, "{}: Finished initialization", m_class_name);
}

u8 Device::isr_status()
{
    if (!m_isr_cfg)
        return base_io_window().read8(REG_ISR_STATUS);
    return config_read8(*m_isr_cfg, 0);
}

bool Device::handle_irq(RegisterState const&)
{
    u8 isr_type = isr_status();
    if ((isr_type & (QUEUE_INTERRUPT | DEVICE_CONFIG_INTERRUPT)) == 0) {
        dbgln_if(VIRTIO_DEBUG, "{}: Handling interrupt with unknown type: {}", class_name(), isr_type);
        return false;
    }
    if (isr_type & DEVICE_CONFIG_INTERRUPT) {
        dbgln_if(VIRTIO_DEBUG, "{}: VirtIO Device config interrupt!", class_name());
        if (!handle_device_config_change()) {
            set_status_bit(DEVICE_STATUS_FAILED);
            dbgln("{}: Failed to handle device config change!", class_name());
        }
    }
    if (isr_type & QUEUE_INTERRUPT) {
        dbgln_if(VIRTIO_DEBUG, "{}: VirtIO Queue interrupt!", class_name());
        for (size_t i = 0; i < m_queues.size(); i++) {
            if (get_queue(i).new_data_available()) {
                handle_queue_update(i);
                return true;
            }
        }
        dbgln_if(VIRTIO_DEBUG, "{}: Got queue interrupt but all queues are up to date!", class_name());
    }
    return true;
}

void Device::supply_chain_and_notify(u16 queue_index, QueueChain& chain)
{
    auto& queue = get_queue(queue_index);
    VERIFY(&chain.queue() == &queue);
    VERIFY(queue.lock().is_locked());
    chain.submit_to_queue();
    if (queue.should_notify())
        notify_queue(queue_index);
}

}