summaryrefslogtreecommitdiff
path: root/embassy-rp/src/i2c.rs
blob: 9596d661de68ac938d1b0df461ae8187b7f91ace (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
use core::marker::PhantomData;

use embassy_hal_common::{into_ref, PeripheralRef};
use pac::i2c;

use crate::dma::AnyChannel;
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral};

/// I2C error abort reason
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum AbortReason {
    /// A bus operation was not acknowledged, e.g. due to the addressed device
    /// not being available on the bus or the device not being ready to process
    /// requests at the moment
    NoAcknowledge,
    /// The arbitration was lost, e.g. electrical problems with the clock signal
    ArbitrationLoss,
    Other(u32),
}

/// I2C error
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
    /// I2C abort with error
    Abort(AbortReason),
    /// User passed in a read buffer that was 0 length
    InvalidReadBufferLength,
    /// User passed in a write buffer that was 0 length
    InvalidWriteBufferLength,
    /// Target i2c address is out of range
    AddressOutOfRange(u16),
    /// Target i2c address is reserved
    AddressReserved(u16),
}

#[non_exhaustive]
#[derive(Copy, Clone)]
pub struct Config {
    pub frequency: u32,
}

impl Default for Config {
    fn default() -> Self {
        Self { frequency: 100_000 }
    }
}

const FIFO_SIZE: u8 = 16;

pub struct I2c<'d, T: Instance, M: Mode> {
    _tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
    _rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
    _dma_buf: [u16; 256],
    phantom: PhantomData<(&'d mut T, M)>,
}

impl<'d, T: Instance> I2c<'d, T, Blocking> {
    pub fn new_blocking(
        _peri: impl Peripheral<P = T> + 'd,
        scl: impl Peripheral<P = impl SclPin<T>> + 'd,
        sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(scl, sda);
        Self::new_inner(_peri, scl.map_into(), sda.map_into(), None, None, config)
    }
}

impl<'d, T: Instance, M: Mode> I2c<'d, T, M> {
    fn new_inner(
        _peri: impl Peripheral<P = T> + 'd,
        scl: PeripheralRef<'d, AnyPin>,
        sda: PeripheralRef<'d, AnyPin>,
        _tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
        _rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
        config: Config,
    ) -> Self {
        into_ref!(_peri);

        assert!(config.frequency <= 1_000_000);
        assert!(config.frequency > 0);

        let p = T::regs();

        unsafe {
            p.ic_enable().write(|w| w.set_enable(false));

            // Select controller mode & speed
            p.ic_con().modify(|w| {
                // Always use "fast" mode (<= 400 kHz, works fine for standard
                // mode too)
                w.set_speed(i2c::vals::Speed::FAST);
                w.set_master_mode(true);
                w.set_ic_slave_disable(true);
                w.set_ic_restart_en(true);
                w.set_tx_empty_ctrl(true);
            });

            // Set FIFO watermarks to 1 to make things simpler. This is encoded
            // by a register value of 0.
            p.ic_tx_tl().write(|w| w.set_tx_tl(0));
            p.ic_rx_tl().write(|w| w.set_rx_tl(0));

            // Configure SCL & SDA pins
            scl.io().ctrl().write(|w| w.set_funcsel(3));
            sda.io().ctrl().write(|w| w.set_funcsel(3));

            scl.pad_ctrl().write(|w| {
                w.set_schmitt(true);
                w.set_ie(true);
                w.set_od(false);
                w.set_pue(true);
                w.set_pde(false);
            });
            sda.pad_ctrl().write(|w| {
                w.set_schmitt(true);
                w.set_ie(true);
                w.set_od(false);
                w.set_pue(true);
                w.set_pde(false);
            });

            // Configure baudrate

            // There are some subtleties to I2C timing which we are completely
            // ignoring here See:
            // https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69
            let clk_base = crate::clocks::clk_peri_freq();

            let period = (clk_base + config.frequency / 2) / config.frequency;
            let lcnt = period * 3 / 5; // spend 3/5 (60%) of the period low
            let hcnt = period - lcnt; // and 2/5 (40%) of the period high

            // Check for out-of-range divisors:
            assert!(hcnt <= 0xffff);
            assert!(lcnt <= 0xffff);
            assert!(hcnt >= 8);
            assert!(lcnt >= 8);

            // Per I2C-bus specification a device in standard or fast mode must
            // internally provide a hold time of at least 300ns for the SDA
            // signal to bridge the undefined region of the falling edge of SCL.
            // A smaller hold time of 120ns is used for fast mode plus.
            let sda_tx_hold_count = if config.frequency < 1_000_000 {
                // sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s /
                // 1e9ns) Reduce 300/1e9 to 3/1e7 to avoid numbers that don't
                // fit in uint. Add 1 to avoid division truncation.
                ((clk_base * 3) / 10_000_000) + 1
            } else {
                // fast mode plus requires a clk_base > 32MHz
                assert!(clk_base >= 32_000_000);

                // sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s /
                // 1e9ns) Reduce 120/1e9 to 3/25e6 to avoid numbers that don't
                // fit in uint. Add 1 to avoid division truncation.
                ((clk_base * 3) / 25_000_000) + 1
            };
            assert!(sda_tx_hold_count <= lcnt - 2);

            p.ic_fs_scl_hcnt().write(|w| w.set_ic_fs_scl_hcnt(hcnt as u16));
            p.ic_fs_scl_lcnt().write(|w| w.set_ic_fs_scl_lcnt(lcnt as u16));
            p.ic_fs_spklen()
                .write(|w| w.set_ic_fs_spklen(if lcnt < 16 { 1 } else { (lcnt / 16) as u8 }));
            p.ic_sda_hold()
                .modify(|w| w.set_ic_sda_tx_hold(sda_tx_hold_count as u16));

            // Enable I2C block
            p.ic_enable().write(|w| w.set_enable(true));
        }

        Self {
            _tx_dma,
            _rx_dma,
            _dma_buf: [0; 256],
            phantom: PhantomData,
        }
    }

    fn setup(addr: u16) -> Result<(), Error> {
        if addr >= 0x80 {
            return Err(Error::AddressOutOfRange(addr));
        }

        if i2c_reserved_addr(addr) {
            return Err(Error::AddressReserved(addr));
        }

        let p = T::regs();
        unsafe {
            p.ic_enable().write(|w| w.set_enable(false));
            p.ic_tar().write(|w| w.set_ic_tar(addr));
            p.ic_enable().write(|w| w.set_enable(true));
        }
        Ok(())
    }

    fn read_and_clear_abort_reason(&mut self) -> Result<(), Error> {
        let p = T::regs();
        unsafe {
            let abort_reason = p.ic_tx_abrt_source().read();
            if abort_reason.0 != 0 {
                // Note clearing the abort flag also clears the reason, and this
                // instance of flag is clear-on-read! Note also the
                // IC_CLR_TX_ABRT register always reads as 0.
                p.ic_clr_tx_abrt().read();

                let reason = if abort_reason.abrt_7b_addr_noack()
                    | abort_reason.abrt_10addr1_noack()
                    | abort_reason.abrt_10addr2_noack()
                {
                    AbortReason::NoAcknowledge
                } else if abort_reason.arb_lost() {
                    AbortReason::ArbitrationLoss
                } else {
                    AbortReason::Other(abort_reason.0)
                };

                Err(Error::Abort(reason))
            } else {
                Ok(())
            }
        }
    }

    fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
        if buffer.is_empty() {
            return Err(Error::InvalidReadBufferLength);
        }

        let p = T::regs();
        let lastindex = buffer.len() - 1;
        for (i, byte) in buffer.iter_mut().enumerate() {
            let first = i == 0;
            let last = i == lastindex;

            // NOTE(unsafe) We have &mut self
            unsafe {
                // wait until there is space in the FIFO to write the next byte
                while p.ic_txflr().read().txflr() == FIFO_SIZE {}

                p.ic_data_cmd().write(|w| {
                    w.set_restart(restart && first);
                    w.set_stop(send_stop && last);

                    w.set_cmd(true);
                });

                while p.ic_rxflr().read().rxflr() == 0 {
                    self.read_and_clear_abort_reason()?;
                }

                *byte = p.ic_data_cmd().read().dat();
            }
        }

        Ok(())
    }

    fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
        if bytes.is_empty() {
            return Err(Error::InvalidWriteBufferLength);
        }

        let p = T::regs();

        for (i, byte) in bytes.iter().enumerate() {
            let last = i == bytes.len() - 1;

            // NOTE(unsafe) We have &mut self
            unsafe {
                p.ic_data_cmd().write(|w| {
                    w.set_stop(send_stop && last);
                    w.set_dat(*byte);
                });

                // Wait until the transmission of the address/data from the
                // internal shift register has completed. For this to function
                // correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
                // TX_EMPTY_CTRL flag was set in i2c_init.
                while !p.ic_raw_intr_stat().read().tx_empty() {}

                let abort_reason = self.read_and_clear_abort_reason();

                if abort_reason.is_err() || (send_stop && last) {
                    // If the transaction was aborted or if it completed
                    // successfully wait until the STOP condition has occured.

                    while !p.ic_raw_intr_stat().read().stop_det() {}

                    p.ic_clr_stop_det().read().clr_stop_det();
                }

                // Note the hardware issues a STOP automatically on an abort
                // condition. Note also the hardware clears RX FIFO as well as
                // TX on abort, ecause we set hwparam
                // IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
                abort_reason?;
            }
        }
        Ok(())
    }

    // =========================
    // Blocking public API
    // =========================

    pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
        Self::setup(address.into())?;
        self.read_blocking_internal(buffer, true, true)
        // Automatic Stop
    }

    pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
        Self::setup(address.into())?;
        self.write_blocking_internal(bytes, true)
    }

    pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
        Self::setup(address.into())?;
        self.write_blocking_internal(bytes, false)?;
        self.read_blocking_internal(buffer, true, true)
        // Automatic Stop
    }
}

mod eh02 {
    use super::*;

    impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> {
        type Error = Error;

        fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_read(address, buffer)
        }
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> {
        type Error = Error;

        fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
            self.blocking_write(address, bytes)
        }
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> {
        type Error = Error;

        fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_write_read(address, bytes, buffer)
        }
    }
}

#[cfg(feature = "unstable-traits")]
mod eh1 {
    use super::*;

    impl embedded_hal_1::i2c::Error for Error {
        fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
            match *self {
                Self::Abort(AbortReason::ArbitrationLoss) => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
                Self::Abort(AbortReason::NoAcknowledge) => {
                    embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address)
                }
                Self::Abort(AbortReason::Other(_)) => embedded_hal_1::i2c::ErrorKind::Other,
                Self::InvalidReadBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
                Self::InvalidWriteBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
                Self::AddressOutOfRange(_) => embedded_hal_1::i2c::ErrorKind::Other,
                Self::AddressReserved(_) => embedded_hal_1::i2c::ErrorKind::Other,
            }
        }
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, T, M> {
        type Error = Error;
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::blocking::I2c for I2c<'d, T, M> {
        fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_read(address, buffer)
        }

        fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> {
            self.blocking_write(address, buffer)
        }

        fn write_iter<B>(&mut self, address: u8, bytes: B) -> Result<(), Self::Error>
        where
            B: IntoIterator<Item = u8>,
        {
            let mut peekable = bytes.into_iter().peekable();
            Self::setup(address.into())?;

            while let Some(tx) = peekable.next() {
                self.write_blocking_internal(&[tx], peekable.peek().is_none())?;
            }
            Ok(())
        }

        fn write_iter_read<B>(&mut self, address: u8, bytes: B, buffer: &mut [u8]) -> Result<(), Self::Error>
        where
            B: IntoIterator<Item = u8>,
        {
            let peekable = bytes.into_iter().peekable();
            Self::setup(address.into())?;

            for tx in peekable {
                self.write_blocking_internal(&[tx], false)?
            }
            self.read_blocking_internal(buffer, true, true)
        }

        fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_write_read(address, wr_buffer, rd_buffer)
        }

        fn transaction<'a>(
            &mut self,
            address: u8,
            operations: &mut [embedded_hal_1::i2c::blocking::Operation<'a>],
        ) -> Result<(), Self::Error> {
            Self::setup(address.into())?;
            for i in 0..operations.len() {
                let last = i == operations.len() - 1;
                match &mut operations[i] {
                    embedded_hal_1::i2c::blocking::Operation::Read(buf) => {
                        self.read_blocking_internal(buf, false, last)?
                    }
                    embedded_hal_1::i2c::blocking::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
                }
            }
            Ok(())
        }

        fn transaction_iter<'a, O>(&mut self, address: u8, operations: O) -> Result<(), Self::Error>
        where
            O: IntoIterator<Item = embedded_hal_1::i2c::blocking::Operation<'a>>,
        {
            Self::setup(address.into())?;
            let mut peekable = operations.into_iter().peekable();
            while let Some(operation) = peekable.next() {
                let last = peekable.peek().is_none();
                match operation {
                    embedded_hal_1::i2c::blocking::Operation::Read(buf) => {
                        self.read_blocking_internal(buf, false, last)?
                    }
                    embedded_hal_1::i2c::blocking::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
                }
            }
            Ok(())
        }
    }
}

fn i2c_reserved_addr(addr: u16) -> bool {
    (addr & 0x78) == 0 || (addr & 0x78) == 0x78
}

mod sealed {
    use embassy_cortex_m::interrupt::Interrupt;

    pub trait Instance {
        const TX_DREQ: u8;
        const RX_DREQ: u8;

        type Interrupt: Interrupt;

        fn regs() -> crate::pac::i2c::I2c;
    }

    pub trait Mode {}

    pub trait SdaPin<T: Instance> {}
    pub trait SclPin<T: Instance> {}
}

pub trait Mode: sealed::Mode {}

macro_rules! impl_mode {
    ($name:ident) => {
        impl sealed::Mode for $name {}
        impl Mode for $name {}
    };
}

pub struct Blocking;
pub struct Async;

impl_mode!(Blocking);
impl_mode!(Async);

pub trait Instance: sealed::Instance {}

macro_rules! impl_instance {
    ($type:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
        impl sealed::Instance for peripherals::$type {
            const TX_DREQ: u8 = $tx_dreq;
            const RX_DREQ: u8 = $rx_dreq;

            type Interrupt = crate::interrupt::$irq;

            fn regs() -> pac::i2c::I2c {
                pac::$type
            }
        }
        impl Instance for peripherals::$type {}
    };
}

impl_instance!(I2C0, I2C0_IRQ, 32, 33);
impl_instance!(I2C1, I2C1_IRQ, 34, 35);

pub trait SdaPin<T: Instance>: sealed::SdaPin<T> + crate::gpio::Pin {}
pub trait SclPin<T: Instance>: sealed::SclPin<T> + crate::gpio::Pin {}

macro_rules! impl_pin {
    ($pin:ident, $instance:ident, $function:ident) => {
        impl sealed::$function<peripherals::$instance> for peripherals::$pin {}
        impl $function<peripherals::$instance> for peripherals::$pin {}
    };
}

impl_pin!(PIN_0, I2C0, SdaPin);
impl_pin!(PIN_1, I2C0, SclPin);
impl_pin!(PIN_2, I2C1, SdaPin);
impl_pin!(PIN_3, I2C1, SclPin);
impl_pin!(PIN_4, I2C0, SdaPin);
impl_pin!(PIN_5, I2C0, SclPin);
impl_pin!(PIN_6, I2C1, SdaPin);
impl_pin!(PIN_7, I2C1, SclPin);
impl_pin!(PIN_8, I2C0, SdaPin);
impl_pin!(PIN_9, I2C0, SclPin);
impl_pin!(PIN_10, I2C1, SdaPin);
impl_pin!(PIN_11, I2C1, SclPin);
impl_pin!(PIN_12, I2C0, SdaPin);
impl_pin!(PIN_13, I2C0, SclPin);
impl_pin!(PIN_14, I2C1, SdaPin);
impl_pin!(PIN_15, I2C1, SclPin);
impl_pin!(PIN_16, I2C0, SdaPin);
impl_pin!(PIN_17, I2C0, SclPin);
impl_pin!(PIN_18, I2C1, SdaPin);
impl_pin!(PIN_19, I2C1, SclPin);
impl_pin!(PIN_20, I2C0, SdaPin);
impl_pin!(PIN_21, I2C0, SclPin);
impl_pin!(PIN_22, I2C1, SdaPin);
impl_pin!(PIN_23, I2C1, SclPin);
impl_pin!(PIN_24, I2C0, SdaPin);
impl_pin!(PIN_25, I2C0, SclPin);
impl_pin!(PIN_26, I2C1, SdaPin);
impl_pin!(PIN_27, I2C1, SclPin);
impl_pin!(PIN_28, I2C0, SdaPin);
impl_pin!(PIN_29, I2C0, SclPin);