summaryrefslogtreecommitdiff
path: root/embassy-rp/src/i2c.rs
blob: b9e4382c7c8e7c40013c04198576b9adcdcc39e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
use core::future;
use core::marker::PhantomData;
use core::task::Poll;

use embassy_cortex_m::interrupt::InterruptExt;
use embassy_hal_common::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use pac::i2c;

use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral};

/// I2C error abort reason
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum AbortReason {
    /// A bus operation was not acknowledged, e.g. due to the addressed device
    /// not being available on the bus or the device not being ready to process
    /// requests at the moment
    NoAcknowledge,
    /// The arbitration was lost, e.g. electrical problems with the clock signal
    ArbitrationLoss,
    Other(u32),
}

/// I2C error
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
    /// I2C abort with error
    Abort(AbortReason),
    /// User passed in a read buffer that was 0 length
    InvalidReadBufferLength,
    /// User passed in a write buffer that was 0 length
    InvalidWriteBufferLength,
    /// Target i2c address is out of range
    AddressOutOfRange(u16),
    /// Target i2c address is reserved
    AddressReserved(u16),
}

#[non_exhaustive]
#[derive(Copy, Clone)]
pub struct Config {
    pub frequency: u32,
}

impl Default for Config {
    fn default() -> Self {
        Self { frequency: 100_000 }
    }
}

const FIFO_SIZE: u8 = 16;

pub struct I2c<'d, T: Instance, M: Mode> {
    phantom: PhantomData<(&'d mut T, M)>,
}

impl<'d, T: Instance> I2c<'d, T, Blocking> {
    pub fn new_blocking(
        peri: impl Peripheral<P = T> + 'd,
        scl: impl Peripheral<P = impl SclPin<T>> + 'd,
        sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(scl, sda);
        Self::new_inner(peri, scl.map_into(), sda.map_into(), config)
    }
}

static I2C_WAKER: [AtomicWaker; 2] = [AtomicWaker::new(), AtomicWaker::new()];

impl<'d, T: Instance> I2c<'d, T, Async> {
    pub fn new_async(
        peri: impl Peripheral<P = T> + 'd,
        scl: impl Peripheral<P = impl SclPin<T>> + 'd,
        sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
        irq: impl Peripheral<P = T::Interrupt> + 'd,
        config: Config,
    ) -> Self {
        into_ref!(scl, sda, irq);

        let i2c = Self::new_inner(peri, scl.map_into(), sda.map_into(), config);

        irq.set_handler(Self::on_interrupt);
        unsafe {
            let i2c = T::regs();

            // mask everything initially
            i2c.ic_intr_mask().write_value(i2c::regs::IcIntrMask(0));
        }
        irq.unpend();
        debug_assert!(!irq.is_pending());
        irq.enable();

        i2c
    }

    /// Calls `f` to check if we are ready or not.
    /// If not, `g` is called once the waker is set (to eg enable the required interrupts).
    async fn wait_on<F, U, G>(&mut self, mut f: F, mut g: G) -> U
    where
        F: FnMut(&mut Self) -> Poll<U>,
        G: FnMut(&mut Self),
    {
        future::poll_fn(|cx| {
            let r = f(self);

            if r.is_pending() {
                I2C_WAKER[T::IDX].register(cx.waker());
                g(self);
            }
            r
        })
        .await
    }

    // Mask interrupts and wake any task waiting for this interrupt
    unsafe fn on_interrupt(_: *mut ()) {
        let i2c = T::regs();
        i2c.ic_intr_mask().write_value(pac::i2c::regs::IcIntrMask::default());

        I2C_WAKER[T::IDX].wake();
    }

    async fn read_async_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
        if buffer.is_empty() {
            return Err(Error::InvalidReadBufferLength);
        }

        let p = T::regs();

        let mut remaining = buffer.len();
        let mut remaining_queue = buffer.len();

        let mut abort_reason = Ok(());

        while remaining > 0 {
            // Waggle SCK - basically the same as write
            let tx_fifo_space = Self::tx_fifo_capacity();
            let mut batch = 0;

            debug_assert!(remaining_queue > 0);

            for _ in 0..remaining_queue.min(tx_fifo_space as usize) {
                remaining_queue -= 1;
                let last = remaining_queue == 0;
                batch += 1;

                unsafe {
                    p.ic_data_cmd().write(|w| {
                        w.set_restart(restart && remaining_queue == buffer.len() - 1);
                        w.set_stop(last && send_stop);
                        w.set_cmd(true);
                    });
                }
            }

            // We've either run out of txfifo or just plain finished setting up
            // the clocks for the message - either way we need to wait for rx
            // data.

            debug_assert!(batch > 0);
            let res = self
                .wait_on(
                    |me| {
                        let rxfifo = Self::rx_fifo_len();
                        if let Err(abort_reason) = me.read_and_clear_abort_reason() {
                            Poll::Ready(Err(abort_reason))
                        } else if rxfifo >= batch {
                            Poll::Ready(Ok(rxfifo))
                        } else {
                            Poll::Pending
                        }
                    },
                    |_me| unsafe {
                        // Set the read threshold to the number of bytes we're
                        // expecting so we don't get spurious interrupts.
                        p.ic_rx_tl().write(|w| w.set_rx_tl(batch - 1));

                        p.ic_intr_mask().modify(|w| {
                            w.set_m_rx_full(true);
                            w.set_m_tx_abrt(true);
                        });
                    },
                )
                .await;

            match res {
                Err(reason) => {
                    abort_reason = Err(reason);
                    break;
                }
                Ok(rxfifo) => {
                    // Fetch things from rx fifo. We're assuming we're the only
                    // rxfifo reader, so nothing else can take things from it.
                    let rxbytes = (rxfifo as usize).min(remaining);
                    let received = buffer.len() - remaining;
                    for b in &mut buffer[received..received + rxbytes] {
                        *b = unsafe { p.ic_data_cmd().read().dat() };
                    }
                    remaining -= rxbytes;
                }
            };
        }

        self.wait_stop_det(abort_reason, send_stop).await
    }

    async fn write_async_internal(
        &mut self,
        bytes: impl IntoIterator<Item = u8>,
        send_stop: bool,
    ) -> Result<(), Error> {
        let p = T::regs();

        let mut bytes = bytes.into_iter().peekable();

        let res = 'xmit: loop {
            let tx_fifo_space = Self::tx_fifo_capacity();

            for _ in 0..tx_fifo_space {
                if let Some(byte) = bytes.next() {
                    let last = bytes.peek().is_none();

                    unsafe {
                        p.ic_data_cmd().write(|w| {
                            w.set_stop(last && send_stop);
                            w.set_cmd(false);
                            w.set_dat(byte);
                        });
                    }
                } else {
                    break 'xmit Ok(());
                }
            }

            let res = self
                .wait_on(
                    |me| {
                        if let abort_reason @ Err(_) = me.read_and_clear_abort_reason() {
                            Poll::Ready(abort_reason)
                        } else if !Self::tx_fifo_full() {
                            // resume if there's any space free in the tx fifo
                            Poll::Ready(Ok(()))
                        } else {
                            Poll::Pending
                        }
                    },
                    |_me| unsafe {
                        // Set tx "free" threshold a little high so that we get
                        // woken before the fifo completely drains to minimize
                        // transfer stalls.
                        p.ic_tx_tl().write(|w| w.set_tx_tl(1));

                        p.ic_intr_mask().modify(|w| {
                            w.set_m_tx_empty(true);
                            w.set_m_tx_abrt(true);
                        })
                    },
                )
                .await;
            if res.is_err() {
                break res;
            }
        };

        self.wait_stop_det(res, send_stop).await
    }

    /// Helper to wait for a stop bit, for both tx and rx. If we had an abort,
    /// then we'll get a hardware-generated stop, otherwise wait for a stop if
    /// we're expecting it.
    ///
    /// Also handles an abort which arises while processing the tx fifo.
    async fn wait_stop_det(&mut self, had_abort: Result<(), Error>, do_stop: bool) -> Result<(), Error> {
        if had_abort.is_err() || do_stop {
            let p = T::regs();

            let had_abort2 = self
                .wait_on(
                    |me| unsafe {
                        // We could see an abort while processing fifo backlog,
                        // so handle it here.
                        let abort = me.read_and_clear_abort_reason();
                        if had_abort.is_ok() && abort.is_err() {
                            Poll::Ready(abort)
                        } else if p.ic_raw_intr_stat().read().stop_det() {
                            Poll::Ready(Ok(()))
                        } else {
                            Poll::Pending
                        }
                    },
                    |_me| unsafe {
                        p.ic_intr_mask().modify(|w| {
                            w.set_m_stop_det(true);
                            w.set_m_tx_abrt(true);
                        });
                    },
                )
                .await;
            unsafe {
                p.ic_clr_stop_det().read();
            }

            had_abort.and(had_abort2)
        } else {
            had_abort
        }
    }

    pub async fn read_async(&mut self, addr: u16, buffer: &mut [u8]) -> Result<(), Error> {
        Self::setup(addr)?;
        self.read_async_internal(buffer, false, true).await
    }

    pub async fn write_async(&mut self, addr: u16, bytes: impl IntoIterator<Item = u8>) -> Result<(), Error> {
        Self::setup(addr)?;
        self.write_async_internal(bytes, true).await
    }
}

impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> {
    fn new_inner(
        _peri: impl Peripheral<P = T> + 'd,
        scl: PeripheralRef<'d, AnyPin>,
        sda: PeripheralRef<'d, AnyPin>,
        config: Config,
    ) -> Self {
        into_ref!(_peri);

        assert!(config.frequency <= 1_000_000);
        assert!(config.frequency > 0);

        let p = T::regs();

        unsafe {
            let reset = T::reset();
            crate::reset::reset(reset);
            crate::reset::unreset_wait(reset);

            p.ic_enable().write(|w| w.set_enable(false));

            // Select controller mode & speed
            p.ic_con().modify(|w| {
                // Always use "fast" mode (<= 400 kHz, works fine for standard
                // mode too)
                w.set_speed(i2c::vals::Speed::FAST);
                w.set_master_mode(true);
                w.set_ic_slave_disable(true);
                w.set_ic_restart_en(true);
                w.set_tx_empty_ctrl(true);
            });

            // Set FIFO watermarks to 1 to make things simpler. This is encoded
            // by a register value of 0.
            p.ic_tx_tl().write(|w| w.set_tx_tl(0));
            p.ic_rx_tl().write(|w| w.set_rx_tl(0));

            // Configure SCL & SDA pins
            scl.io().ctrl().write(|w| w.set_funcsel(3));
            sda.io().ctrl().write(|w| w.set_funcsel(3));

            scl.pad_ctrl().write(|w| {
                w.set_schmitt(true);
                w.set_ie(true);
                w.set_od(false);
                w.set_pue(true);
                w.set_pde(false);
            });
            sda.pad_ctrl().write(|w| {
                w.set_schmitt(true);
                w.set_ie(true);
                w.set_od(false);
                w.set_pue(true);
                w.set_pde(false);
            });

            // Configure baudrate

            // There are some subtleties to I2C timing which we are completely
            // ignoring here See:
            // https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69
            let clk_base = crate::clocks::clk_peri_freq();

            let period = (clk_base + config.frequency / 2) / config.frequency;
            let lcnt = period * 3 / 5; // spend 3/5 (60%) of the period low
            let hcnt = period - lcnt; // and 2/5 (40%) of the period high

            // Check for out-of-range divisors:
            assert!(hcnt <= 0xffff);
            assert!(lcnt <= 0xffff);
            assert!(hcnt >= 8);
            assert!(lcnt >= 8);

            // Per I2C-bus specification a device in standard or fast mode must
            // internally provide a hold time of at least 300ns for the SDA
            // signal to bridge the undefined region of the falling edge of SCL.
            // A smaller hold time of 120ns is used for fast mode plus.
            let sda_tx_hold_count = if config.frequency < 1_000_000 {
                // sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s /
                // 1e9ns) Reduce 300/1e9 to 3/1e7 to avoid numbers that don't
                // fit in uint. Add 1 to avoid division truncation.
                ((clk_base * 3) / 10_000_000) + 1
            } else {
                // fast mode plus requires a clk_base > 32MHz
                assert!(clk_base >= 32_000_000);

                // sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s /
                // 1e9ns) Reduce 120/1e9 to 3/25e6 to avoid numbers that don't
                // fit in uint. Add 1 to avoid division truncation.
                ((clk_base * 3) / 25_000_000) + 1
            };
            assert!(sda_tx_hold_count <= lcnt - 2);

            p.ic_fs_scl_hcnt().write(|w| w.set_ic_fs_scl_hcnt(hcnt as u16));
            p.ic_fs_scl_lcnt().write(|w| w.set_ic_fs_scl_lcnt(lcnt as u16));
            p.ic_fs_spklen()
                .write(|w| w.set_ic_fs_spklen(if lcnt < 16 { 1 } else { (lcnt / 16) as u8 }));
            p.ic_sda_hold()
                .modify(|w| w.set_ic_sda_tx_hold(sda_tx_hold_count as u16));

            // Enable I2C block
            p.ic_enable().write(|w| w.set_enable(true));
        }

        Self { phantom: PhantomData }
    }

    fn setup(addr: u16) -> Result<(), Error> {
        if addr >= 0x80 {
            return Err(Error::AddressOutOfRange(addr));
        }

        if i2c_reserved_addr(addr) {
            return Err(Error::AddressReserved(addr));
        }

        let p = T::regs();
        unsafe {
            p.ic_enable().write(|w| w.set_enable(false));
            p.ic_tar().write(|w| w.set_ic_tar(addr));
            p.ic_enable().write(|w| w.set_enable(true));
        }
        Ok(())
    }

    #[inline]
    fn tx_fifo_full() -> bool {
        Self::tx_fifo_capacity() == 0
    }

    #[inline]
    fn tx_fifo_capacity() -> u8 {
        let p = T::regs();
        unsafe { FIFO_SIZE - p.ic_txflr().read().txflr() }
    }

    #[inline]
    fn rx_fifo_len() -> u8 {
        let p = T::regs();
        unsafe { p.ic_rxflr().read().rxflr() }
    }

    fn read_and_clear_abort_reason(&mut self) -> Result<(), Error> {
        let p = T::regs();
        unsafe {
            let abort_reason = p.ic_tx_abrt_source().read();
            if abort_reason.0 != 0 {
                // Note clearing the abort flag also clears the reason, and this
                // instance of flag is clear-on-read! Note also the
                // IC_CLR_TX_ABRT register always reads as 0.
                p.ic_clr_tx_abrt().read();

                let reason = if abort_reason.abrt_7b_addr_noack()
                    | abort_reason.abrt_10addr1_noack()
                    | abort_reason.abrt_10addr2_noack()
                {
                    AbortReason::NoAcknowledge
                } else if abort_reason.arb_lost() {
                    AbortReason::ArbitrationLoss
                } else {
                    AbortReason::Other(abort_reason.0)
                };

                Err(Error::Abort(reason))
            } else {
                Ok(())
            }
        }
    }

    fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
        if buffer.is_empty() {
            return Err(Error::InvalidReadBufferLength);
        }

        let p = T::regs();
        let lastindex = buffer.len() - 1;
        for (i, byte) in buffer.iter_mut().enumerate() {
            let first = i == 0;
            let last = i == lastindex;

            // NOTE(unsafe) We have &mut self
            unsafe {
                // wait until there is space in the FIFO to write the next byte
                while Self::tx_fifo_full() {}

                p.ic_data_cmd().write(|w| {
                    w.set_restart(restart && first);
                    w.set_stop(send_stop && last);

                    w.set_cmd(true);
                });

                while Self::rx_fifo_len() == 0 {
                    self.read_and_clear_abort_reason()?;
                }

                *byte = p.ic_data_cmd().read().dat();
            }
        }

        Ok(())
    }

    fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
        if bytes.is_empty() {
            return Err(Error::InvalidWriteBufferLength);
        }

        let p = T::regs();

        for (i, byte) in bytes.iter().enumerate() {
            let last = i == bytes.len() - 1;

            // NOTE(unsafe) We have &mut self
            unsafe {
                p.ic_data_cmd().write(|w| {
                    w.set_stop(send_stop && last);
                    w.set_dat(*byte);
                });

                // Wait until the transmission of the address/data from the
                // internal shift register has completed. For this to function
                // correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
                // TX_EMPTY_CTRL flag was set in i2c_init.
                while !p.ic_raw_intr_stat().read().tx_empty() {}

                let abort_reason = self.read_and_clear_abort_reason();

                if abort_reason.is_err() || (send_stop && last) {
                    // If the transaction was aborted or if it completed
                    // successfully wait until the STOP condition has occured.

                    while !p.ic_raw_intr_stat().read().stop_det() {}

                    p.ic_clr_stop_det().read().clr_stop_det();
                }

                // Note the hardware issues a STOP automatically on an abort
                // condition. Note also the hardware clears RX FIFO as well as
                // TX on abort, ecause we set hwparam
                // IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
                abort_reason?;
            }
        }
        Ok(())
    }

    // =========================
    // Blocking public API
    // =========================

    pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
        Self::setup(address.into())?;
        self.read_blocking_internal(buffer, true, true)
        // Automatic Stop
    }

    pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
        Self::setup(address.into())?;
        self.write_blocking_internal(bytes, true)
    }

    pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
        Self::setup(address.into())?;
        self.write_blocking_internal(bytes, false)?;
        self.read_blocking_internal(buffer, true, true)
        // Automatic Stop
    }
}

mod eh02 {
    use super::*;

    impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> {
        type Error = Error;

        fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_read(address, buffer)
        }
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> {
        type Error = Error;

        fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
            self.blocking_write(address, bytes)
        }
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> {
        type Error = Error;

        fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_write_read(address, bytes, buffer)
        }
    }
}

#[cfg(feature = "unstable-traits")]
mod eh1 {
    use super::*;

    impl embedded_hal_1::i2c::Error for Error {
        fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
            match *self {
                Self::Abort(AbortReason::ArbitrationLoss) => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
                Self::Abort(AbortReason::NoAcknowledge) => {
                    embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address)
                }
                Self::Abort(AbortReason::Other(_)) => embedded_hal_1::i2c::ErrorKind::Other,
                Self::InvalidReadBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
                Self::InvalidWriteBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
                Self::AddressOutOfRange(_) => embedded_hal_1::i2c::ErrorKind::Other,
                Self::AddressReserved(_) => embedded_hal_1::i2c::ErrorKind::Other,
            }
        }
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, T, M> {
        type Error = Error;
    }

    impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> {
        fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_read(address, buffer)
        }

        fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> {
            self.blocking_write(address, buffer)
        }

        fn write_iter<B>(&mut self, address: u8, bytes: B) -> Result<(), Self::Error>
        where
            B: IntoIterator<Item = u8>,
        {
            let mut peekable = bytes.into_iter().peekable();
            Self::setup(address.into())?;

            while let Some(tx) = peekable.next() {
                self.write_blocking_internal(&[tx], peekable.peek().is_none())?;
            }
            Ok(())
        }

        fn write_iter_read<B>(&mut self, address: u8, bytes: B, buffer: &mut [u8]) -> Result<(), Self::Error>
        where
            B: IntoIterator<Item = u8>,
        {
            let peekable = bytes.into_iter().peekable();
            Self::setup(address.into())?;

            for tx in peekable {
                self.write_blocking_internal(&[tx], false)?
            }
            self.read_blocking_internal(buffer, true, true)
        }

        fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
            self.blocking_write_read(address, wr_buffer, rd_buffer)
        }

        fn transaction<'a>(
            &mut self,
            address: u8,
            operations: &mut [embedded_hal_1::i2c::Operation<'a>],
        ) -> Result<(), Self::Error> {
            Self::setup(address.into())?;
            for i in 0..operations.len() {
                let last = i == operations.len() - 1;
                match &mut operations[i] {
                    embedded_hal_1::i2c::Operation::Read(buf) => self.read_blocking_internal(buf, false, last)?,
                    embedded_hal_1::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
                }
            }
            Ok(())
        }

        fn transaction_iter<'a, O>(&mut self, address: u8, operations: O) -> Result<(), Self::Error>
        where
            O: IntoIterator<Item = embedded_hal_1::i2c::Operation<'a>>,
        {
            Self::setup(address.into())?;
            let mut peekable = operations.into_iter().peekable();
            while let Some(operation) = peekable.next() {
                let last = peekable.peek().is_none();
                match operation {
                    embedded_hal_1::i2c::Operation::Read(buf) => self.read_blocking_internal(buf, false, last)?,
                    embedded_hal_1::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
                }
            }
            Ok(())
        }
    }
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod nightly {
    use core::future::Future;

    use embedded_hal_1::i2c::Operation;
    use embedded_hal_async::i2c::AddressMode;

    use super::*;

    impl<'d, A, T> embedded_hal_async::i2c::I2c<A> for I2c<'d, T, Async>
    where
        A: AddressMode + Into<u16> + 'static,
        T: Instance + 'd,
    {
        type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a
            where Self: 'a;
        type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a
            where Self: 'a;
        type WriteReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a
            where Self: 'a;
        type TransactionFuture<'a, 'b> = impl Future<Output = Result<(), Error>> + 'a
            where Self: 'a, 'b: 'a;

        fn read<'a>(&'a mut self, address: A, buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
            let addr: u16 = address.into();

            async move {
                Self::setup(addr)?;
                self.read_async_internal(buffer, false, true).await
            }
        }

        fn write<'a>(&'a mut self, address: A, write: &'a [u8]) -> Self::WriteFuture<'a> {
            let addr: u16 = address.into();

            async move {
                Self::setup(addr)?;
                self.write_async_internal(write.iter().copied(), true).await
            }
        }

        fn write_read<'a>(
            &'a mut self,
            address: A,
            bytes: &'a [u8],
            buffer: &'a mut [u8],
        ) -> Self::WriteReadFuture<'a> {
            let addr: u16 = address.into();

            async move {
                Self::setup(addr)?;
                self.write_async_internal(bytes.iter().cloned(), false).await?;
                self.read_async_internal(buffer, false, true).await
            }
        }

        fn transaction<'a, 'b>(
            &'a mut self,
            address: A,
            operations: &'a mut [Operation<'b>],
        ) -> Self::TransactionFuture<'a, 'b> {
            let addr: u16 = address.into();

            async move {
                let mut iterator = operations.iter_mut();

                while let Some(op) = iterator.next() {
                    let last = iterator.len() == 0;

                    match op {
                        Operation::Read(buffer) => {
                            Self::setup(addr)?;
                            self.read_async_internal(buffer, false, last).await?;
                        }
                        Operation::Write(buffer) => {
                            Self::setup(addr)?;
                            self.write_async_internal(buffer.into_iter().cloned(), last).await?;
                        }
                    }
                }
                Ok(())
            }
        }
    }
}

fn i2c_reserved_addr(addr: u16) -> bool {
    (addr & 0x78) == 0 || (addr & 0x78) == 0x78
}

mod sealed {
    use embassy_cortex_m::interrupt::Interrupt;

    pub trait Instance {
        const TX_DREQ: u8;
        const RX_DREQ: u8;
        const IDX: usize;

        type Interrupt: Interrupt;

        fn regs() -> crate::pac::i2c::I2c;
        fn reset() -> crate::pac::resets::regs::Peripherals;
    }

    pub trait Mode {}

    pub trait SdaPin<T: Instance> {}
    pub trait SclPin<T: Instance> {}
}

pub trait Mode: sealed::Mode {}

macro_rules! impl_mode {
    ($name:ident) => {
        impl sealed::Mode for $name {}
        impl Mode for $name {}
    };
}

pub struct Blocking;
pub struct Async;

impl_mode!(Blocking);
impl_mode!(Async);

pub trait Instance: sealed::Instance {}

macro_rules! impl_instance {
    ($type:ident, $idx:expr, $irq:ident, $reset:ident, $tx_dreq:expr, $rx_dreq:expr) => {
        impl sealed::Instance for peripherals::$type {
            const TX_DREQ: u8 = $tx_dreq;
            const RX_DREQ: u8 = $rx_dreq;
            const IDX: usize = $idx;

            type Interrupt = crate::interrupt::$irq;

            #[inline]
            fn regs() -> pac::i2c::I2c {
                pac::$type
            }

            #[inline]
            fn reset() -> pac::resets::regs::Peripherals {
                let mut ret = pac::resets::regs::Peripherals::default();
                ret.$reset(true);
                ret
            }
        }
        impl Instance for peripherals::$type {}
    };
}

impl_instance!(I2C0, 0, I2C0_IRQ, set_i2c0, 32, 33);
impl_instance!(I2C1, 1, I2C1_IRQ, set_i2c1, 34, 35);

pub trait SdaPin<T: Instance>: sealed::SdaPin<T> + crate::gpio::Pin {}
pub trait SclPin<T: Instance>: sealed::SclPin<T> + crate::gpio::Pin {}

macro_rules! impl_pin {
    ($pin:ident, $instance:ident, $function:ident) => {
        impl sealed::$function<peripherals::$instance> for peripherals::$pin {}
        impl $function<peripherals::$instance> for peripherals::$pin {}
    };
}

impl_pin!(PIN_0, I2C0, SdaPin);
impl_pin!(PIN_1, I2C0, SclPin);
impl_pin!(PIN_2, I2C1, SdaPin);
impl_pin!(PIN_3, I2C1, SclPin);
impl_pin!(PIN_4, I2C0, SdaPin);
impl_pin!(PIN_5, I2C0, SclPin);
impl_pin!(PIN_6, I2C1, SdaPin);
impl_pin!(PIN_7, I2C1, SclPin);
impl_pin!(PIN_8, I2C0, SdaPin);
impl_pin!(PIN_9, I2C0, SclPin);
impl_pin!(PIN_10, I2C1, SdaPin);
impl_pin!(PIN_11, I2C1, SclPin);
impl_pin!(PIN_12, I2C0, SdaPin);
impl_pin!(PIN_13, I2C0, SclPin);
impl_pin!(PIN_14, I2C1, SdaPin);
impl_pin!(PIN_15, I2C1, SclPin);
impl_pin!(PIN_16, I2C0, SdaPin);
impl_pin!(PIN_17, I2C0, SclPin);
impl_pin!(PIN_18, I2C1, SdaPin);
impl_pin!(PIN_19, I2C1, SclPin);
impl_pin!(PIN_20, I2C0, SdaPin);
impl_pin!(PIN_21, I2C0, SclPin);
impl_pin!(PIN_22, I2C1, SdaPin);
impl_pin!(PIN_23, I2C1, SclPin);
impl_pin!(PIN_24, I2C0, SdaPin);
impl_pin!(PIN_25, I2C0, SclPin);
impl_pin!(PIN_26, I2C1, SdaPin);
impl_pin!(PIN_27, I2C1, SclPin);
impl_pin!(PIN_28, I2C0, SdaPin);
impl_pin!(PIN_29, I2C0, SclPin);