summaryrefslogtreecommitdiff
path: root/embassy-lora/src/sx126x/sx126x_lora/subroutine.rs
blob: 02a0a72ec94c69d8be3e76e2353b6e4b2900d96c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::SpiBus;

use super::mod_params::*;
use super::LoRa;

// Internal frequency of the radio
const SX126X_XTAL_FREQ: u32 = 32000000;

// Scaling factor used to perform fixed-point operations
const SX126X_PLL_STEP_SHIFT_AMOUNT: u32 = 14;

// PLL step - scaled with SX126X_PLL_STEP_SHIFT_AMOUNT
const SX126X_PLL_STEP_SCALED: u32 = SX126X_XTAL_FREQ >> (25 - SX126X_PLL_STEP_SHIFT_AMOUNT);

// Maximum value for parameter symbNum
const SX126X_MAX_LORA_SYMB_NUM_TIMEOUT: u8 = 248;

// Provides board-specific functionality for Semtech SX126x-based boards

impl<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS> LoRa<SPI, CS, RESET, ANTRX, ANTTX, WAIT>
where
    SPI: SpiBus<u8, Error = BUS>,
    CS: OutputPin,
    RESET: OutputPin,
    ANTRX: OutputPin,
    ANTTX: OutputPin,
    WAIT: Wait,
{
    // Initialize the radio driver
    pub(super) async fn sub_init(&mut self) -> Result<(), RadioError<BUS>> {
        self.brd_reset().await?;
        self.brd_wakeup().await?;
        self.sub_set_standby(StandbyMode::RC).await?;
        self.brd_io_tcxo_init().await?;
        self.brd_io_rf_switch_init().await?;
        self.image_calibrated = false;
        Ok(())
    }

    // Wakeup the radio if it is in Sleep mode and check that Busy is low
    pub(super) async fn sub_check_device_ready(&mut self) -> Result<(), RadioError<BUS>> {
        let operating_mode = self.brd_get_operating_mode();
        if operating_mode == RadioMode::Sleep || operating_mode == RadioMode::ReceiveDutyCycle {
            self.brd_wakeup().await?;
            self.brd_ant_sw_on().await?;
        }
        self.brd_wait_on_busy().await?;
        Ok(())
    }

    // Save the payload to be sent in the radio buffer
    pub(super) async fn sub_set_payload(&mut self, payload: &[u8]) -> Result<(), RadioError<BUS>> {
        self.brd_write_buffer(0x00, payload).await?;
        Ok(())
    }

    // Read the payload received.
    pub(super) async fn sub_get_payload(&mut self, buffer: &mut [u8]) -> Result<u8, RadioError<BUS>> {
        let (size, offset) = self.sub_get_rx_buffer_status().await?;
        if (size as usize) > buffer.len() {
            Err(RadioError::PayloadSizeMismatch(size as usize, buffer.len()))
        } else {
            self.brd_read_buffer(offset, buffer).await?;
            Ok(size)
        }
    }

    // Send a payload
    pub(super) async fn sub_send_payload(&mut self, payload: &[u8], timeout: u32) -> Result<(), RadioError<BUS>> {
        self.sub_set_payload(payload).await?;
        self.sub_set_tx(timeout).await?;
        Ok(())
    }

    // Get a 32-bit random value generated by the radio.  A valid packet type must have been configured before using this command.
    //
    // The radio must be in reception mode before executing this function.  This code can potentially result in interrupt generation. It is the responsibility of
    // the calling code to disable radio interrupts before calling this function, and re-enable them afterwards if necessary, or be certain that any interrupts
    // generated during this process will not cause undesired side-effects in the software.
    //
    // The random numbers produced by the generator do not have a uniform or Gaussian distribution. If uniformity is needed, perform appropriate software post-processing.
    pub(super) async fn sub_get_random(&mut self) -> Result<u32, RadioError<BUS>> {
        let mut reg_ana_lna_buffer_original = [0x00u8];
        let mut reg_ana_mixer_buffer_original = [0x00u8];
        let mut reg_ana_lna_buffer = [0x00u8];
        let mut reg_ana_mixer_buffer = [0x00u8];
        let mut number_buffer = [0x00u8, 0x00u8, 0x00u8, 0x00u8];

        self.brd_read_registers(Register::AnaLNA, &mut reg_ana_lna_buffer_original)
            .await?;
        reg_ana_lna_buffer[0] = reg_ana_lna_buffer_original[0] & (!(1 << 0));
        self.brd_write_registers(Register::AnaLNA, &reg_ana_lna_buffer).await?;

        self.brd_read_registers(Register::AnaMixer, &mut reg_ana_mixer_buffer_original)
            .await?;
        reg_ana_mixer_buffer[0] = reg_ana_mixer_buffer_original[0] & (!(1 << 7));
        self.brd_write_registers(Register::AnaMixer, &reg_ana_mixer_buffer)
            .await?;

        // Set radio in continuous reception
        self.sub_set_rx(0xFFFFFFu32).await?;

        self.brd_read_registers(Register::GeneratedRandomNumber, &mut number_buffer)
            .await?;

        self.sub_set_standby(StandbyMode::RC).await?;

        self.brd_write_registers(Register::AnaLNA, &reg_ana_lna_buffer_original)
            .await?;
        self.brd_write_registers(Register::AnaMixer, &reg_ana_mixer_buffer_original)
            .await?;

        Ok(Self::convert_u8_buffer_to_u32(&number_buffer))
    }

    // Set the radio in sleep mode
    pub(super) async fn sub_set_sleep(&mut self, sleep_config: SleepParams) -> Result<(), RadioError<BUS>> {
        self.brd_ant_sw_off().await?;

        let _fix_rx = self.antenna_rx.set_low();
        let _fix_tx = self.antenna_tx.set_low();

        if !sleep_config.warm_start {
            self.image_calibrated = false;
        }

        self.brd_write_command(OpCode::SetSleep, &[sleep_config.value()])
            .await?;
        self.brd_set_operating_mode(RadioMode::Sleep);
        Ok(())
    }

    // Set the radio in configuration mode
    pub(super) async fn sub_set_standby(&mut self, mode: StandbyMode) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::SetStandby, &[mode.value()]).await?;
        if mode == StandbyMode::RC {
            self.brd_set_operating_mode(RadioMode::StandbyRC);
        } else {
            self.brd_set_operating_mode(RadioMode::StandbyXOSC);
        }

        let _fix_rx = self.antenna_rx.set_low();
        let _fix_tx = self.antenna_tx.set_low();
        Ok(())
    }

    // Set the radio in FS mode
    pub(super) async fn sub_set_fs(&mut self) -> Result<(), RadioError<BUS>> {
        // antenna settings ???
        self.brd_write_command(OpCode::SetFS, &[]).await?;
        self.brd_set_operating_mode(RadioMode::FrequencySynthesis);
        Ok(())
    }

    // Set the radio in transmission mode with timeout specified
    pub(super) async fn sub_set_tx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
        let buffer = [
            Self::timeout_1(timeout),
            Self::timeout_2(timeout),
            Self::timeout_3(timeout),
        ];

        let _fix_rx = self.antenna_rx.set_low();
        let _fix_tx = self.antenna_tx.set_high();

        self.brd_set_operating_mode(RadioMode::Transmit);
        self.brd_write_command(OpCode::SetTx, &buffer).await?;
        Ok(())
    }

    // Set the radio in reception mode with timeout specified
    pub(super) async fn sub_set_rx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
        let buffer = [
            Self::timeout_1(timeout),
            Self::timeout_2(timeout),
            Self::timeout_3(timeout),
        ];

        let _fix_rx = self.antenna_rx.set_high();
        let _fix_tx = self.antenna_tx.set_low();

        self.brd_set_operating_mode(RadioMode::Receive);
        self.brd_write_registers(Register::RxGain, &[0x94u8]).await?;
        self.brd_write_command(OpCode::SetRx, &buffer).await?;
        Ok(())
    }

    // Set the radio in reception mode with Boosted LNA gain and timeout specified
    pub(super) async fn sub_set_rx_boosted(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
        let buffer = [
            Self::timeout_1(timeout),
            Self::timeout_2(timeout),
            Self::timeout_3(timeout),
        ];

        let _fix_rx = self.antenna_rx.set_high();
        let _fix_tx = self.antenna_tx.set_low();

        self.brd_set_operating_mode(RadioMode::Receive);
        // set max LNA gain, increase current by ~2mA for around ~3dB in sensitivity
        self.brd_write_registers(Register::RxGain, &[0x96u8]).await?;
        self.brd_write_command(OpCode::SetRx, &buffer).await?;
        Ok(())
    }

    // Set the Rx duty cycle management parameters
    pub(super) async fn sub_set_rx_duty_cycle(&mut self, rx_time: u32, sleep_time: u32) -> Result<(), RadioError<BUS>> {
        let buffer = [
            ((rx_time >> 16) & 0xFF) as u8,
            ((rx_time >> 8) & 0xFF) as u8,
            (rx_time & 0xFF) as u8,
            ((sleep_time >> 16) & 0xFF) as u8,
            ((sleep_time >> 8) & 0xFF) as u8,
            (sleep_time & 0xFF) as u8,
        ];

        // antenna settings ???

        self.brd_write_command(OpCode::SetRxDutyCycle, &buffer).await?;
        self.brd_set_operating_mode(RadioMode::ReceiveDutyCycle);
        Ok(())
    }

    // Set the radio in CAD mode
    pub(super) async fn sub_set_cad(&mut self) -> Result<(), RadioError<BUS>> {
        let _fix_rx = self.antenna_rx.set_high();
        let _fix_tx = self.antenna_tx.set_low();

        self.brd_write_command(OpCode::SetCAD, &[]).await?;
        self.brd_set_operating_mode(RadioMode::ChannelActivityDetection);
        Ok(())
    }

    // Set the radio in continuous wave transmission mode
    pub(super) async fn sub_set_tx_continuous_wave(&mut self) -> Result<(), RadioError<BUS>> {
        let _fix_rx = self.antenna_rx.set_low();
        let _fix_tx = self.antenna_tx.set_high();

        self.brd_write_command(OpCode::SetTxContinuousWave, &[]).await?;
        self.brd_set_operating_mode(RadioMode::Transmit);
        Ok(())
    }

    // Set the radio in continuous preamble transmission mode
    pub(super) async fn sub_set_tx_infinite_preamble(&mut self) -> Result<(), RadioError<BUS>> {
        let _fix_rx = self.antenna_rx.set_low();
        let _fix_tx = self.antenna_tx.set_high();

        self.brd_write_command(OpCode::SetTxContinuousPremable, &[]).await?;
        self.brd_set_operating_mode(RadioMode::Transmit);
        Ok(())
    }

    // Decide which interrupt will stop the internal radio rx timer.
    //   false     timer stop after header/syncword detection
    //   true      timer stop after preamble detection
    pub(super) async fn sub_set_stop_rx_timer_on_preamble_detect(
        &mut self,
        enable: bool,
    ) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::SetStopRxTimerOnPreamble, &[enable as u8])
            .await?;
        Ok(())
    }

    // Set the number of symbols the radio will wait to validate a reception
    pub(super) async fn sub_set_lora_symb_num_timeout(&mut self, symb_num: u16) -> Result<(), RadioError<BUS>> {
        let mut exp = 0u8;
        let mut reg;
        let mut mant = ((core::cmp::min(symb_num, SX126X_MAX_LORA_SYMB_NUM_TIMEOUT as u16) as u8) + 1) >> 1;
        while mant > 31 {
            mant = (mant + 3) >> 2;
            exp += 1;
        }
        reg = mant << ((2 * exp) + 1);

        self.brd_write_command(OpCode::SetLoRaSymbTimeout, &[reg]).await?;

        if symb_num != 0 {
            reg = exp + (mant << 3);
            self.brd_write_registers(Register::SynchTimeout, &[reg]).await?;
        }

        Ok(())
    }

    // Set the power regulators operating mode (LDO or DC_DC).  Using only LDO implies that the Rx or Tx current is doubled
    pub(super) async fn sub_set_regulator_mode(&mut self, mode: RegulatorMode) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::SetRegulatorMode, &[mode.value()])
            .await?;
        Ok(())
    }

    // Calibrate the given radio block
    pub(super) async fn sub_calibrate(&mut self, calibrate_params: CalibrationParams) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::Calibrate, &[calibrate_params.value()])
            .await?;
        Ok(())
    }

    // Calibrate the image rejection based on the given frequency
    pub(super) async fn sub_calibrate_image(&mut self, freq: u32) -> Result<(), RadioError<BUS>> {
        let mut cal_freq = [0x00u8, 0x00u8];

        if freq > 900000000 {
            cal_freq[0] = 0xE1;
            cal_freq[1] = 0xE9;
        } else if freq > 850000000 {
            cal_freq[0] = 0xD7;
            cal_freq[1] = 0xDB;
        } else if freq > 770000000 {
            cal_freq[0] = 0xC1;
            cal_freq[1] = 0xC5;
        } else if freq > 460000000 {
            cal_freq[0] = 0x75;
            cal_freq[1] = 0x81;
        } else if freq > 425000000 {
            cal_freq[0] = 0x6B;
            cal_freq[1] = 0x6F;
        }
        self.brd_write_command(OpCode::CalibrateImage, &cal_freq).await?;
        Ok(())
    }

    // Activate the extention of the timeout when a long preamble is used
    pub(super) async fn sub_set_long_preamble(&mut self, _enable: u8) -> Result<(), RadioError<BUS>> {
        Ok(()) // no operation currently
    }

    // Set the transmission parameters
    //   hp_max          0 for sx1261, 7 for sx1262
    //   device_sel      1 for sx1261, 0 for sx1262
    //   pa_lut          0 for 14dBm LUT, 1 for 22dBm LUT
    pub(super) async fn sub_set_pa_config(
        &mut self,
        pa_duty_cycle: u8,
        hp_max: u8,
        device_sel: u8,
        pa_lut: u8,
    ) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::SetPAConfig, &[pa_duty_cycle, hp_max, device_sel, pa_lut])
            .await?;
        Ok(())
    }

    // Define into which mode the chip goes after a TX / RX done
    pub(super) async fn sub_set_rx_tx_fallback_mode(&mut self, fallback_mode: u8) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::SetTxFallbackMode, &[fallback_mode])
            .await?;
        Ok(())
    }

    // Set the IRQ mask and DIO masks
    pub(super) async fn sub_set_dio_irq_params(
        &mut self,
        irq_mask: u16,
        dio1_mask: u16,
        dio2_mask: u16,
        dio3_mask: u16,
    ) -> Result<(), RadioError<BUS>> {
        let mut buffer = [0x00u8; 8];

        buffer[0] = ((irq_mask >> 8) & 0x00FF) as u8;
        buffer[1] = (irq_mask & 0x00FF) as u8;
        buffer[2] = ((dio1_mask >> 8) & 0x00FF) as u8;
        buffer[3] = (dio1_mask & 0x00FF) as u8;
        buffer[4] = ((dio2_mask >> 8) & 0x00FF) as u8;
        buffer[5] = (dio2_mask & 0x00FF) as u8;
        buffer[6] = ((dio3_mask >> 8) & 0x00FF) as u8;
        buffer[7] = (dio3_mask & 0x00FF) as u8;
        self.brd_write_command(OpCode::CfgDIOIrq, &buffer).await?;
        Ok(())
    }

    // Return the current IRQ status
    pub(super) async fn sub_get_irq_status(&mut self) -> Result<u16, RadioError<BUS>> {
        let mut irq_status = [0x00u8, 0x00u8];
        self.brd_read_command(OpCode::GetIrqStatus, &mut irq_status).await?;
        Ok(((irq_status[0] as u16) << 8) | (irq_status[1] as u16))
    }

    // Indicate if DIO2 is used to control an RF Switch
    pub(super) async fn sub_set_dio2_as_rf_switch_ctrl(&mut self, enable: bool) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::SetRFSwitchMode, &[enable as u8]).await?;
        Ok(())
    }

    // Indicate if the radio main clock is supplied from a TCXO
    //   tcxo_voltage        voltage used to control the TCXO on/off from DIO3
    //   timeout             duration given to the TCXO to go to 32MHz
    pub(super) async fn sub_set_dio3_as_tcxo_ctrl(
        &mut self,
        tcxo_voltage: TcxoCtrlVoltage,
        timeout: u32,
    ) -> Result<(), RadioError<BUS>> {
        let buffer = [
            tcxo_voltage.value() & 0x07,
            Self::timeout_1(timeout),
            Self::timeout_2(timeout),
            Self::timeout_3(timeout),
        ];
        self.brd_write_command(OpCode::SetTCXOMode, &buffer).await?;

        Ok(())
    }

    // Set the RF frequency (Hz)
    pub(super) async fn sub_set_rf_frequency(&mut self, frequency: u32) -> Result<(), RadioError<BUS>> {
        let mut buffer = [0x00u8; 4];

        if !self.image_calibrated {
            self.sub_calibrate_image(frequency).await?;
            self.image_calibrated = true;
        }

        let freq_in_pll_steps = Self::convert_freq_in_hz_to_pll_step(frequency);

        buffer[0] = ((freq_in_pll_steps >> 24) & 0xFF) as u8;
        buffer[1] = ((freq_in_pll_steps >> 16) & 0xFF) as u8;
        buffer[2] = ((freq_in_pll_steps >> 8) & 0xFF) as u8;
        buffer[3] = (freq_in_pll_steps & 0xFF) as u8;
        self.brd_write_command(OpCode::SetRFFrequency, &buffer).await?;
        Ok(())
    }

    // Set the radio for the given protocol (LoRa or GFSK).  This method has to be called before setting RF frequency, modulation paramaters, and packet paramaters.
    pub(super) async fn sub_set_packet_type(&mut self, packet_type: PacketType) -> Result<(), RadioError<BUS>> {
        self.packet_type = packet_type;
        self.brd_write_command(OpCode::SetPacketType, &[packet_type.value()])
            .await?;
        Ok(())
    }

    // Get the current radio protocol (LoRa or GFSK)
    pub(super) fn sub_get_packet_type(&mut self) -> PacketType {
        self.packet_type
    }

    // Set the transmission parameters
    //   power           RF output power [-18..13] dBm
    //   ramp_time       transmission ramp up time
    pub(super) async fn sub_set_tx_params(
        &mut self,
        mut power: i8,
        ramp_time: RampTime,
    ) -> Result<(), RadioError<BUS>> {
        if self.brd_get_radio_type() == RadioType::SX1261 {
            if power == 15 {
                self.sub_set_pa_config(0x06, 0x00, 0x01, 0x01).await?;
            } else {
                self.sub_set_pa_config(0x04, 0x00, 0x01, 0x01).await?;
            }

            if power >= 14 {
                power = 14;
            } else if power < -17 {
                power = -17;
            }
        } else {
            // Provide better resistance of the SX1262 Tx to antenna mismatch (see DS_SX1261-2_V1.2 datasheet chapter 15.2)
            let mut tx_clamp_cfg = [0x00u8];
            self.brd_read_registers(Register::TxClampCfg, &mut tx_clamp_cfg).await?;
            tx_clamp_cfg[0] = tx_clamp_cfg[0] | (0x0F << 1);
            self.brd_write_registers(Register::TxClampCfg, &tx_clamp_cfg).await?;

            self.sub_set_pa_config(0x04, 0x07, 0x00, 0x01).await?;

            if power > 22 {
                power = 22;
            } else if power < -9 {
                power = -9;
            }
        }

        // power conversion of negative number from i8 to u8 ???
        self.brd_write_command(OpCode::SetTxParams, &[power as u8, ramp_time.value()])
            .await?;
        Ok(())
    }

    // Set the modulation parameters
    pub(super) async fn sub_set_modulation_params(&mut self) -> Result<(), RadioError<BUS>> {
        if self.modulation_params.is_some() {
            let mut buffer = [0x00u8; 4];

            // Since this driver only supports LoRa, ensure the packet type is set accordingly
            self.sub_set_packet_type(PacketType::LoRa).await?;

            let modulation_params = self.modulation_params.unwrap();
            buffer[0] = modulation_params.spreading_factor.value();
            buffer[1] = modulation_params.bandwidth.value();
            buffer[2] = modulation_params.coding_rate.value();
            buffer[3] = modulation_params.low_data_rate_optimize;

            self.brd_write_command(OpCode::SetModulationParams, &buffer).await?;
            Ok(())
        } else {
            Err(RadioError::ModulationParamsMissing)
        }
    }

    // Set the packet parameters
    pub(super) async fn sub_set_packet_params(&mut self) -> Result<(), RadioError<BUS>> {
        if self.packet_params.is_some() {
            let mut buffer = [0x00u8; 6];

            // Since this driver only supports LoRa, ensure the packet type is set accordingly
            self.sub_set_packet_type(PacketType::LoRa).await?;

            let packet_params = self.packet_params.unwrap();
            buffer[0] = ((packet_params.preamble_length >> 8) & 0xFF) as u8;
            buffer[1] = (packet_params.preamble_length & 0xFF) as u8;
            buffer[2] = packet_params.implicit_header as u8;
            buffer[3] = packet_params.payload_length;
            buffer[4] = packet_params.crc_on as u8;
            buffer[5] = packet_params.iq_inverted as u8;

            self.brd_write_command(OpCode::SetPacketParams, &buffer).await?;
            Ok(())
        } else {
            Err(RadioError::PacketParamsMissing)
        }
    }

    // Set the channel activity detection (CAD) parameters
    //   symbols            number of symbols to use for CAD operations
    //   det_peak           limit for detection of SNR peak used in the CAD
    //   det_min            minimum symbol recognition for CAD
    //   exit_mode          operation to be done at the end of CAD action
    //   timeout            timeout value to abort the CAD activity

    pub(super) async fn sub_set_cad_params(
        &mut self,
        symbols: CADSymbols,
        det_peak: u8,
        det_min: u8,
        exit_mode: CADExitMode,
        timeout: u32,
    ) -> Result<(), RadioError<BUS>> {
        let mut buffer = [0x00u8; 7];

        buffer[0] = symbols.value();
        buffer[1] = det_peak;
        buffer[2] = det_min;
        buffer[3] = exit_mode.value();
        buffer[4] = Self::timeout_1(timeout);
        buffer[5] = Self::timeout_2(timeout);
        buffer[6] = Self::timeout_3(timeout);

        self.brd_write_command(OpCode::SetCADParams, &buffer).await?;
        self.brd_set_operating_mode(RadioMode::ChannelActivityDetection);
        Ok(())
    }

    // Set the data buffer base address for transmission and reception
    pub(super) async fn sub_set_buffer_base_address(
        &mut self,
        tx_base_address: u8,
        rx_base_address: u8,
    ) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::SetBufferBaseAddress, &[tx_base_address, rx_base_address])
            .await?;
        Ok(())
    }

    // Get the current radio status
    pub(super) async fn sub_get_status(&mut self) -> Result<RadioStatus, RadioError<BUS>> {
        let status = self.brd_read_command(OpCode::GetStatus, &mut []).await?;
        Ok(RadioStatus {
            cmd_status: (status & (0x07 << 1)) >> 1,
            chip_mode: (status & (0x07 << 4)) >> 4,
        })
    }

    // Get the instantaneous RSSI value for the last packet received
    pub(super) async fn sub_get_rssi_inst(&mut self) -> Result<i8, RadioError<BUS>> {
        let mut buffer = [0x00u8];
        self.brd_read_command(OpCode::GetRSSIInst, &mut buffer).await?;
        let rssi: i8 = (-(buffer[0] as i8)) >> 1; // check this ???
        Ok(rssi)
    }

    // Get the last received packet buffer status
    pub(super) async fn sub_get_rx_buffer_status(&mut self) -> Result<(u8, u8), RadioError<BUS>> {
        if self.packet_params.is_some() {
            let mut status = [0x00u8; 2];
            let mut payload_length_buffer = [0x00u8];

            self.brd_read_command(OpCode::GetRxBufferStatus, &mut status).await?;
            if (self.sub_get_packet_type() == PacketType::LoRa) && self.packet_params.unwrap().implicit_header {
                self.brd_read_registers(Register::PayloadLength, &mut payload_length_buffer)
                    .await?;
            } else {
                payload_length_buffer[0] = status[0];
            }

            let payload_length = payload_length_buffer[0];
            let offset = status[1];

            Ok((payload_length, offset))
        } else {
            Err(RadioError::PacketParamsMissing)
        }
    }

    // Get the last received packet payload status
    pub(super) async fn sub_get_packet_status(&mut self) -> Result<PacketStatus, RadioError<BUS>> {
        let mut status = [0x00u8; 3];
        self.brd_read_command(OpCode::GetPacketStatus, &mut status).await?;

        // check this ???
        let rssi = (-(status[0] as i8)) >> 1;
        let snr = ((status[1] as i8) + 2) >> 2;
        let signal_rssi = (-(status[2] as i8)) >> 1;
        let freq_error = self.frequency_error;

        Ok(PacketStatus {
            rssi,
            snr,
            signal_rssi,
            freq_error,
        })
    }

    // Get the possible system errors
    pub(super) async fn sub_get_device_errors(&mut self) -> Result<RadioSystemError, RadioError<BUS>> {
        let mut errors = [0x00u8; 2];
        self.brd_read_command(OpCode::GetErrors, &mut errors).await?;

        Ok(RadioSystemError {
            rc_64khz_calibration: (errors[1] & (1 << 0)) != 0,
            rc_13mhz_calibration: (errors[1] & (1 << 1)) != 0,
            pll_calibration: (errors[1] & (1 << 2)) != 0,
            adc_calibration: (errors[1] & (1 << 3)) != 0,
            image_calibration: (errors[1] & (1 << 4)) != 0,
            xosc_start: (errors[1] & (1 << 5)) != 0,
            pll_lock: (errors[1] & (1 << 6)) != 0,
            pa_ramp: (errors[0] & (1 << 0)) != 0,
        })
    }

    // Clear all the errors in the device
    pub(super) async fn sub_clear_device_errors(&mut self) -> Result<(), RadioError<BUS>> {
        self.brd_write_command(OpCode::ClrErrors, &[0x00u8, 0x00u8]).await?;
        Ok(())
    }

    // Clear the IRQs
    pub(super) async fn sub_clear_irq_status(&mut self, irq: u16) -> Result<(), RadioError<BUS>> {
        let mut buffer = [0x00u8, 0x00u8];
        buffer[0] = ((irq >> 8) & 0xFF) as u8;
        buffer[1] = (irq & 0xFF) as u8;
        self.brd_write_command(OpCode::ClrIrqStatus, &buffer).await?;
        Ok(())
    }

    // Utility functions

    fn timeout_1(timeout: u32) -> u8 {
        ((timeout >> 16) & 0xFF) as u8
    }
    fn timeout_2(timeout: u32) -> u8 {
        ((timeout >> 8) & 0xFF) as u8
    }
    fn timeout_3(timeout: u32) -> u8 {
        (timeout & 0xFF) as u8
    }

    // check this ???
    fn convert_u8_buffer_to_u32(buffer: &[u8; 4]) -> u32 {
        let b0 = buffer[0] as u32;
        let b1 = buffer[1] as u32;
        let b2 = buffer[2] as u32;
        let b3 = buffer[3] as u32;
        (b0 << 24) | (b1 << 16) | (b2 << 8) | b3
    }

    fn convert_freq_in_hz_to_pll_step(freq_in_hz: u32) -> u32 {
        // Get integer and fractional parts of the frequency computed with a PLL step scaled value
        let steps_int = freq_in_hz / SX126X_PLL_STEP_SCALED;
        let steps_frac = freq_in_hz - (steps_int * SX126X_PLL_STEP_SCALED);

        (steps_int << SX126X_PLL_STEP_SHIFT_AMOUNT)
            + (((steps_frac << SX126X_PLL_STEP_SHIFT_AMOUNT) + (SX126X_PLL_STEP_SCALED >> 1)) / SX126X_PLL_STEP_SCALED)
    }
}