summaryrefslogtreecommitdiff
path: root/Userland/Services/ChessEngine/MCTSTree.cpp
blob: bd3dfc985fa80f8a9dad98fb325933936c83491d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Copyright (c) 2020, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "MCTSTree.h"
#include <AK/DeprecatedString.h>
#include <stdlib.h>

MCTSTree::MCTSTree(Chess::Board const& board, MCTSTree* parent)
    : m_parent(parent)
    , m_board(make<Chess::Board>(board))
    , m_last_move(board.last_move())
    , m_turn(board.turn())
{
}

MCTSTree::MCTSTree(MCTSTree&& other)
    : m_children(move(other.m_children))
    , m_parent(other.m_parent)
    , m_white_points(other.m_white_points)
    , m_simulations(other.m_simulations)
    , m_board(move(other.m_board))
    , m_last_move(move(other.m_last_move))
    , m_turn(other.m_turn)
    , m_moves_generated(other.m_moves_generated)
{
    other.m_parent = nullptr;
}

MCTSTree& MCTSTree::select_leaf()
{
    if (!expanded() || m_children.size() == 0)
        return *this;

    MCTSTree* node = nullptr;
    double max_uct = -double(INFINITY);
    for (auto& child : m_children) {
        double uct = child.uct(m_turn);
        if (uct >= max_uct) {
            max_uct = uct;
            node = &child;
        }
    }
    VERIFY(node);
    return node->select_leaf();
}

MCTSTree& MCTSTree::expand()
{
    VERIFY(!expanded() || m_children.size() == 0);

    if (!m_moves_generated) {
        m_board->generate_moves([&](Chess::Move chess_move) {
            auto clone = m_board->clone_without_history();
            clone.apply_move(chess_move);
            m_children.append(make<MCTSTree>(move(clone), this));
            return IterationDecision::Continue;
        });
        m_moves_generated = true;
        if (m_children.size() != 0)
            m_board = nullptr; // Release the board to save memory.
    }

    if (m_children.size() == 0) {
        return *this;
    }

    for (auto& child : m_children) {
        if (child.m_simulations == 0) {
            return child;
        }
    }
    VERIFY_NOT_REACHED();
}

int MCTSTree::simulate_game() const
{
    Chess::Board clone = *m_board;
    while (!clone.game_finished()) {
        clone.apply_move(clone.random_move());
    }
    return clone.game_score();
}

int MCTSTree::heuristic() const
{
    if (m_board->game_finished())
        return m_board->game_score();

    double winchance = max(min(double(m_board->material_imbalance()) / 6, 1.0), -1.0);

    double random = double(rand()) / RAND_MAX;
    if (winchance >= random)
        return 1;
    if (winchance <= -random)
        return -1;

    return 0;
}

void MCTSTree::apply_result(int game_score)
{
    m_simulations++;
    m_white_points += game_score;

    if (m_parent)
        m_parent->apply_result(game_score);
}

void MCTSTree::do_round()
{

    // Note: Limit expansion to spare some memory
    //       Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.
    //       Rémi Coulom.
    auto* node_ptr = &select_leaf();
    if (node_ptr->m_simulations > s_number_of_visit_parameter)
        node_ptr = &select_leaf().expand();

    auto& node = *node_ptr;

    int result;
    if constexpr (s_eval_method == EvalMethod::Simulation) {
        result = node.simulate_game();
    } else {
        result = node.heuristic();
    }
    node.apply_result(result);
}

Optional<MCTSTree&> MCTSTree::child_with_move(Chess::Move chess_move)
{
    for (auto& node : m_children) {
        if (node.last_move() == chess_move)
            return node;
    }
    return {};
}

MCTSTree& MCTSTree::best_node()
{
    int score_multiplier = (m_turn == Chess::Color::White) ? 1 : -1;

    MCTSTree* best_node_ptr = nullptr;
    double best_score = -double(INFINITY);
    VERIFY(m_children.size());
    for (auto& node : m_children) {
        double node_score = node.expected_value() * score_multiplier;
        if (node_score >= best_score) {
            best_node_ptr = &node;
            best_score = node_score;
        }
    }
    VERIFY(best_node_ptr);

    return *best_node_ptr;
}

Chess::Move MCTSTree::last_move() const
{
    return m_last_move.value();
}

double MCTSTree::expected_value() const
{
    if (m_simulations == 0)
        return 0;

    return double(m_white_points) / m_simulations;
}

double MCTSTree::uct(Chess::Color color) const
{
    // UCT: Upper Confidence Bound Applied to Trees.
    //      Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning"

    // Fun fact: Szepesvári was my data structures professor.
    double expected = expected_value() * ((color == Chess::Color::White) ? 1 : -1);
    return expected + s_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations);
}

bool MCTSTree::expanded() const
{
    if (!m_moves_generated)
        return false;

    for (auto& child : m_children) {
        if (child.m_simulations == 0)
            return false;
    }

    return true;
}