1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Mixer.h"
#include "AK/Format.h"
#include <AK/Array.h>
#include <AK/MemoryStream.h>
#include <AK/NumericLimits.h>
#include <AudioServer/ClientConnection.h>
#include <AudioServer/Mixer.h>
#include <LibCore/ConfigFile.h>
#include <LibCore/Timer.h>
#include <pthread.h>
#include <stdlib.h>
#include <sys/ioctl.h>
namespace AudioServer {
u8 Mixer::m_zero_filled_buffer[4096];
Mixer::Mixer(NonnullRefPtr<Core::ConfigFile> config)
: m_device(Core::File::construct("/dev/audio", this))
, m_sound_thread(Threading::Thread::construct(
[this] {
mix();
return 0;
},
"AudioServer[mixer]"))
, m_config(move(config))
{
if (!m_device->open(Core::OpenMode::WriteOnly)) {
dbgln("Can't open audio device: {}", m_device->error_string());
return;
}
m_muted = m_config->read_bool_entry("Master", "Mute", false);
m_main_volume = static_cast<double>(m_config->read_num_entry("Master", "Volume", 100)) / 100.0;
m_sound_thread->start();
}
Mixer::~Mixer()
{
}
NonnullRefPtr<ClientAudioStream> Mixer::create_queue(ClientConnection& client)
{
auto queue = adopt_ref(*new ClientAudioStream(client));
m_pending_mutex.lock();
m_pending_mixing.append(*queue);
m_pending_mutex.unlock();
// Signal the mixer thread to start back up, in case nobody was connected before.
m_mixing_necessary.signal();
return queue;
}
void Mixer::mix()
{
decltype(m_pending_mixing) active_mix_queues;
for (;;) {
m_pending_mutex.lock();
// While we have nothing to mix, wait on the condition.
m_mixing_necessary.wait_while([this, &active_mix_queues]() { return m_pending_mixing.is_empty() && active_mix_queues.is_empty(); });
if (!m_pending_mixing.is_empty()) {
active_mix_queues.extend(move(m_pending_mixing));
m_pending_mixing.clear();
}
m_pending_mutex.unlock();
active_mix_queues.remove_all_matching([&](auto& entry) { return !entry->client(); });
Audio::Sample mixed_buffer[1024];
auto mixed_buffer_length = (int)(sizeof(mixed_buffer) / sizeof(Audio::Sample));
m_main_volume.advance_time();
int active_queues = 0;
// Mix the buffers together into the output
for (auto& queue : active_mix_queues) {
if (!queue->client()) {
queue->clear();
continue;
}
++active_queues;
queue->volume().advance_time();
for (int i = 0; i < mixed_buffer_length; ++i) {
auto& mixed_sample = mixed_buffer[i];
Audio::Sample sample;
if (!queue->get_next_sample(sample))
break;
if (queue->is_muted())
continue;
sample.log_multiply(SAMPLE_HEADROOM);
sample.log_multiply(queue->volume());
mixed_sample += sample;
}
}
if (m_muted) {
m_device->write(m_zero_filled_buffer, sizeof(m_zero_filled_buffer));
} else {
Array<u8, 4096> buffer;
OutputMemoryStream stream { buffer };
for (int i = 0; i < mixed_buffer_length; ++i) {
auto& mixed_sample = mixed_buffer[i];
// Even though it's not realistic, the user expects no sound at 0%.
if (m_main_volume < 0.01)
mixed_sample = Audio::Sample { 0 };
else
mixed_sample.log_multiply(m_main_volume);
mixed_sample.clip();
LittleEndian<i16> out_sample;
out_sample = mixed_sample.left * NumericLimits<i16>::max();
stream << out_sample;
out_sample = mixed_sample.right * NumericLimits<i16>::max();
stream << out_sample;
}
VERIFY(stream.is_end());
VERIFY(!stream.has_any_error());
m_device->write(stream.data(), stream.size());
}
}
}
void Mixer::set_main_volume(double volume)
{
if (volume < 0)
m_main_volume = 0;
else if (volume > 2)
m_main_volume = 2;
else
m_main_volume = volume;
m_config->write_num_entry("Master", "Volume", static_cast<int>(volume * 100));
request_setting_sync();
ClientConnection::for_each([&](ClientConnection& client) {
client.did_change_main_mix_volume({}, main_volume());
});
}
void Mixer::set_muted(bool muted)
{
if (m_muted == muted)
return;
m_muted = muted;
m_config->write_bool_entry("Master", "Mute", m_muted);
request_setting_sync();
ClientConnection::for_each([muted](ClientConnection& client) {
client.did_change_main_mix_muted_state({}, muted);
});
}
int Mixer::audiodevice_set_sample_rate(u32 sample_rate)
{
int code = ioctl(m_device->fd(), SOUNDCARD_IOCTL_SET_SAMPLE_RATE, sample_rate);
if (code != 0)
dbgln("Error while setting sample rate to {}: ioctl error: {}", sample_rate, strerror(errno));
return code;
}
u32 Mixer::audiodevice_get_sample_rate() const
{
u32 sample_rate = 0;
int code = ioctl(m_device->fd(), SOUNDCARD_IOCTL_GET_SAMPLE_RATE, &sample_rate);
if (code != 0)
dbgln("Error while getting sample rate: ioctl error: {}", strerror(errno));
return sample_rate;
}
void Mixer::request_setting_sync()
{
if (m_config_write_timer.is_null() || !m_config_write_timer->is_active()) {
m_config_write_timer = Core::Timer::create_single_shot(
AUDIO_CONFIG_WRITE_INTERVAL,
[this] {
m_config->sync();
},
this);
m_config_write_timer->start();
}
}
ClientAudioStream::ClientAudioStream(ClientConnection& client)
: m_client(client)
{
}
void ClientAudioStream::enqueue(NonnullRefPtr<Audio::Buffer>&& buffer)
{
m_remaining_samples += buffer->sample_count();
m_queue.enqueue(move(buffer));
}
}
|