summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibWeb/Layout/GridFormattingContext.cpp
blob: 7b607cd0fd00fee3e82cbfe4c0c6989b029ef73b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
/*
 * Copyright (c) 2022, Martin Falisse <mfalisse@outlook.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <LibWeb/DOM/Node.h>
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/GridFormattingContext.h>

namespace Web::Layout {

GridFormattingContext::GridFormattingContext(LayoutState& state, BlockContainer const& block_container, FormattingContext* parent)
    : BlockFormattingContext(state, block_container, parent)
{
}

GridFormattingContext::~GridFormattingContext() = default;

void GridFormattingContext::run(Box const& box, LayoutMode, AvailableSpace const& available_space)
{
    auto should_skip_is_anonymous_text_run = [&](Box& child_box) -> bool {
        if (child_box.is_anonymous() && !child_box.first_child_of_type<BlockContainer>()) {
            bool contains_only_white_space = true;
            child_box.for_each_in_subtree([&](auto const& node) {
                if (!is<TextNode>(node) || !static_cast<TextNode const&>(node).dom_node().data().is_whitespace()) {
                    contains_only_white_space = false;
                    return IterationDecision::Break;
                }
                return IterationDecision::Continue;
            });
            if (contains_only_white_space)
                return true;
        }
        return false;
    };

    // https://drafts.csswg.org/css-grid/#overview-placement
    // 2.2. Placing Items
    // The contents of the grid container are organized into individual grid items (analogous to
    // flex items), which are then assigned to predefined areas in the grid. They can be explicitly
    // placed using coordinates through the grid-placement properties or implicitly placed into
    // empty areas using auto-placement.
    struct PositionedBox {
        Box const& box;
        int row { 0 };
        int row_span { 1 };
        int column { 0 };
        int column_span { 1 };
        float computed_height { 0 };
    };
    Vector<PositionedBox> positioned_boxes;
    Vector<Box const&> boxes_to_place;
    box.for_each_child_of_type<Box>([&](Box& child_box) {
        if (should_skip_is_anonymous_text_run(child_box))
            return IterationDecision::Continue;
        boxes_to_place.append(child_box);
        return IterationDecision::Continue;
    });
    auto occupation_grid = OccupationGrid(static_cast<int>(box.computed_values().grid_template_columns().size()), static_cast<int>(box.computed_values().grid_template_rows().size()));

    // https://drafts.csswg.org/css-grid/#auto-placement-algo
    // 8.5. Grid Item Placement Algorithm

    // FIXME: 0. Generate anonymous grid items

    // 1. Position anything that's not auto-positioned.
    for (size_t i = 0; i < boxes_to_place.size(); i++) {
        auto const& child_box = boxes_to_place[i];
        if (is_auto_positioned_row(child_box.computed_values().grid_row_start(), child_box.computed_values().grid_row_end())
            || is_auto_positioned_column(child_box.computed_values().grid_column_start(), child_box.computed_values().grid_column_end()))
            continue;

        int row_start = child_box.computed_values().grid_row_start().raw_value();
        int row_end = child_box.computed_values().grid_row_end().raw_value();
        int column_start = child_box.computed_values().grid_column_start().raw_value();
        int column_end = child_box.computed_values().grid_column_end().raw_value();

        // https://drafts.csswg.org/css-grid/#line-placement
        // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties

        // https://drafts.csswg.org/css-grid/#grid-placement-slot
        // FIXME: <custom-ident>
        // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose
        // line name is <custom-ident>-start (for grid-*-start) / <custom-ident>-end (for grid-*-end),
        // contributes the first such line to the grid item’s placement.

        // Note: Named grid areas automatically generate implicitly-assigned line names of this form, so
        // specifying grid-row-start: foo will choose the start edge of that named grid area (unless another
        // line named foo-start was explicitly specified before it).

        // Otherwise, treat this as if the integer 1 had been specified along with the <custom-ident>.

        // https://drafts.csswg.org/css-grid/#grid-placement-int
        // [ <integer [−∞,−1]> | <integer [1,∞]> ] && <custom-ident>?
        // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it
        // instead counts in reverse, starting from the end edge of the explicit grid.
        if (row_end < 0)
            row_end = occupation_grid.row_count() + row_end + 2;
        if (column_end < 0)
            column_end = occupation_grid.column_count() + column_end + 2;

        // If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
        // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose
        // of finding this position.

        // An <integer> value of zero makes the declaration invalid.

        // https://drafts.csswg.org/css-grid/#grid-placement-span-int
        // span && [ <integer [1,∞]> || <custom-ident> ]
        // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid
        // item’s grid area is N lines from its opposite edge in the corresponding direction. For example,
        // grid-column-end: span 2 indicates the second grid line in the endward direction from the
        // grid-column-start line.
        int row_span = 1;
        int column_span = 1;
        if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span())
            row_span = child_box.computed_values().grid_row_end().raw_value();
        if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span())
            column_span = child_box.computed_values().grid_column_end().raw_value();
        if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) {
            row_span = child_box.computed_values().grid_row_start().raw_value();
            row_start = row_end - row_span;
        }
        if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) {
            column_span = child_box.computed_values().grid_column_start().raw_value();
            column_start = column_end - column_span;
        }

        // If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
        // lines with that name exist, all implicit grid lines on the side of the explicit grid
        // corresponding to the search direction are assumed to have that name for the purpose of counting
        // this span.

        // https://drafts.csswg.org/css-grid/#grid-placement-auto
        // auto
        // The property contributes nothing to the grid item’s placement, indicating auto-placement or a
        // default span of one. (See § 8 Placing Grid Items, above.)

        // https://drafts.csswg.org/css-grid/#grid-placement-errors
        // 8.3.1. Grid Placement Conflict Handling
        // If the placement for a grid item contains two lines, and the start line is further end-ward than
        // the end line, swap the two lines. If the start line is equal to the end line, remove the end
        // line.
        if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) {
            if (row_start > row_end)
                swap(row_start, row_end);
            if (row_start != row_end)
                row_span = row_end - row_start;
        }
        if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) {
            if (column_start > column_end)
                swap(column_start, column_end);
            if (column_start != column_end)
                column_span = column_end - column_start;
        }

        // If the placement contains two spans, remove the one contributed by the end grid-placement
        // property.
        if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span())
            row_span = child_box.computed_values().grid_row_start().raw_value();
        if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span())
            column_span = child_box.computed_values().grid_column_start().raw_value();

        // FIXME: If the placement contains only a span for a named line, replace it with a span of 1.

        row_start -= 1;
        column_start -= 1;
        positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span });

        occupation_grid.maybe_add_row(row_start + row_span);
        occupation_grid.maybe_add_column(column_start + column_span);
        occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span);
        boxes_to_place.remove(i);
        i--;
    }

    // 2. Process the items locked to a given row.
    // FIXME: Do "dense" packing
    for (size_t i = 0; i < boxes_to_place.size(); i++) {
        auto const& child_box = boxes_to_place[i];
        if (is_auto_positioned_row(child_box.computed_values().grid_row_start(), child_box.computed_values().grid_row_end()))
            continue;

        int row_start = child_box.computed_values().grid_row_start().raw_value();
        int row_end = child_box.computed_values().grid_row_end().raw_value();

        // https://drafts.csswg.org/css-grid/#line-placement
        // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties

        // https://drafts.csswg.org/css-grid/#grid-placement-slot
        // FIXME: <custom-ident>
        // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose
        // line name is <custom-ident>-start (for grid-*-start) / <custom-ident>-end (for grid-*-end),
        // contributes the first such line to the grid item’s placement.

        // Note: Named grid areas automatically generate implicitly-assigned line names of this form, so
        // specifying grid-row-start: foo will choose the start edge of that named grid area (unless another
        // line named foo-start was explicitly specified before it).

        // Otherwise, treat this as if the integer 1 had been specified along with the <custom-ident>.

        // https://drafts.csswg.org/css-grid/#grid-placement-int
        // [ <integer [−∞,−1]> | <integer [1,∞]> ] && <custom-ident>?
        // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it
        // instead counts in reverse, starting from the end edge of the explicit grid.
        if (row_end < 0)
            row_end = occupation_grid.row_count() + row_end + 2;

        // If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
        // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose
        // of finding this position.

        // An <integer> value of zero makes the declaration invalid.

        // https://drafts.csswg.org/css-grid/#grid-placement-span-int
        // span && [ <integer [1,∞]> || <custom-ident> ]
        // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid
        // item’s grid area is N lines from its opposite edge in the corresponding direction. For example,
        // grid-column-end: span 2 indicates the second grid line in the endward direction from the
        // grid-column-start line.
        int row_span = 1;
        if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span())
            row_span = child_box.computed_values().grid_row_end().raw_value();
        if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) {
            row_span = child_box.computed_values().grid_row_start().raw_value();
            row_start = row_end - row_span;
            // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-row: span 2 / 1
            if (row_start < 0)
                row_start = 1;
        }

        // If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
        // lines with that name exist, all implicit grid lines on the side of the explicit grid
        // corresponding to the search direction are assumed to have that name for the purpose of counting
        // this span.

        // https://drafts.csswg.org/css-grid/#grid-placement-auto
        // auto
        // The property contributes nothing to the grid item’s placement, indicating auto-placement or a
        // default span of one. (See § 8 Placing Grid Items, above.)

        // https://drafts.csswg.org/css-grid/#grid-placement-errors
        // 8.3.1. Grid Placement Conflict Handling
        // If the placement for a grid item contains two lines, and the start line is further end-ward than
        // the end line, swap the two lines. If the start line is equal to the end line, remove the end
        // line.
        if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) {
            if (row_start > row_end)
                swap(row_start, row_end);
            if (row_start != row_end)
                row_span = row_end - row_start;
        }

        // If the placement contains two spans, remove the one contributed by the end grid-placement
        // property.
        if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span())
            row_span = child_box.computed_values().grid_row_start().raw_value();

        // FIXME: If the placement contains only a span for a named line, replace it with a span of 1.

        row_start -= 1;
        occupation_grid.maybe_add_row(row_start + row_span);

        int column_start = 0;
        auto column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1;
        bool found_available_column = false;
        for (int column_index = column_start; column_index < occupation_grid.column_count(); column_index++) {
            if (!occupation_grid.is_occupied(column_index, row_start)) {
                found_available_column = true;
                column_start = column_index;
                break;
            }
        }
        if (!found_available_column) {
            column_start = occupation_grid.column_count();
            occupation_grid.maybe_add_column(column_start + column_span);
        }
        occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span);

        positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span });
        boxes_to_place.remove(i);
        i--;
    }

    // 3. Determine the columns in the implicit grid.
    // NOTE: "implicit grid" here is the same as the occupation_grid

    // 3.1. Start with the columns from the explicit grid.
    // NOTE: Done in step 1.

    // 3.2. Among all the items with a definite column position (explicitly positioned items, items
    // positioned in the previous step, and items not yet positioned but with a definite column) add
    // columns to the beginning and end of the implicit grid as necessary to accommodate those items.
    // NOTE: "Explicitly positioned items" and "items positioned in the previous step" done in step 1
    // and 2, respectively. Adding columns for "items not yet positioned but with a definite column"
    // will be done in step 4.

    // 3.3. If the largest column span among all the items without a definite column position is larger
    // than the width of the implicit grid, add columns to the end of the implicit grid to accommodate
    // that column span.
    // NOTE: Done in step 1, 2, and will be done in step 4.

    // 4. Position the remaining grid items.
    // For each grid item that hasn't been positioned by the previous steps, in order-modified document
    // order:
    auto auto_placement_cursor_x = 0;
    auto auto_placement_cursor_y = 0;
    for (size_t i = 0; i < boxes_to_place.size(); i++) {
        auto const& child_box = boxes_to_place[i];
        // 4.1. For sparse packing:
        // FIXME: no distinction made. See #4.2

        // 4.1.1. If the item has a definite column position:
        if (!is_auto_positioned_column(child_box.computed_values().grid_column_start(), child_box.computed_values().grid_column_end())) {
            int column_start = child_box.computed_values().grid_column_start().raw_value();
            int column_end = child_box.computed_values().grid_column_end().raw_value();

            // https://drafts.csswg.org/css-grid/#line-placement
            // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties

            // https://drafts.csswg.org/css-grid/#grid-placement-slot
            // FIXME: <custom-ident>
            // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose
            // line name is <custom-ident>-start (for grid-*-start) / <custom-ident>-end (for grid-*-end),
            // contributes the first such line to the grid item’s placement.

            // Note: Named grid areas automatically generate implicitly-assigned line names of this form, so
            // specifying grid-row-start: foo will choose the start edge of that named grid area (unless another
            // line named foo-start was explicitly specified before it).

            // Otherwise, treat this as if the integer 1 had been specified along with the <custom-ident>.

            // https://drafts.csswg.org/css-grid/#grid-placement-int
            // [ <integer [−∞,−1]> | <integer [1,∞]> ] && <custom-ident>?
            // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it
            // instead counts in reverse, starting from the end edge of the explicit grid.
            if (column_end < 0)
                column_end = occupation_grid.column_count() + column_end + 2;

            // If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
            // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose
            // of finding this position.

            // An <integer> value of zero makes the declaration invalid.

            // https://drafts.csswg.org/css-grid/#grid-placement-span-int
            // span && [ <integer [1,∞]> || <custom-ident> ]
            // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid
            // item’s grid area is N lines from its opposite edge in the corresponding direction. For example,
            // grid-column-end: span 2 indicates the second grid line in the endward direction from the
            // grid-column-start line.
            int column_span = 1;
            auto row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1;
            if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span())
                column_span = child_box.computed_values().grid_column_end().raw_value();
            if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) {
                column_span = child_box.computed_values().grid_column_start().raw_value();
                column_start = column_end - column_span;
                // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-column: span 2 / 1
                if (column_start < 0)
                    column_start = 1;
            }

            // If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
            // lines with that name exist, all implicit grid lines on the side of the explicit grid
            // corresponding to the search direction are assumed to have that name for the purpose of counting
            // this span.

            // https://drafts.csswg.org/css-grid/#grid-placement-auto
            // auto
            // The property contributes nothing to the grid item’s placement, indicating auto-placement or a
            // default span of one. (See § 8 Placing Grid Items, above.)

            // https://drafts.csswg.org/css-grid/#grid-placement-errors
            // 8.3.1. Grid Placement Conflict Handling
            // If the placement for a grid item contains two lines, and the start line is further end-ward than
            // the end line, swap the two lines. If the start line is equal to the end line, remove the end
            // line.
            if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) {
                if (column_start > column_end)
                    swap(column_start, column_end);
                if (column_start != column_end)
                    column_span = column_end - column_start;
            }

            // If the placement contains two spans, remove the one contributed by the end grid-placement
            // property.
            if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span())
                column_span = child_box.computed_values().grid_column_start().raw_value();

            // FIXME: If the placement contains only a span for a named line, replace it with a span of 1.

            column_start -= 1;

            // 4.1.1.1. Set the column position of the cursor to the grid item's column-start line. If this is
            // less than the previous column position of the cursor, increment the row position by 1.
            if (column_start < auto_placement_cursor_x)
                auto_placement_cursor_y++;
            auto_placement_cursor_x = column_start;

            occupation_grid.maybe_add_column(auto_placement_cursor_x + column_span);
            occupation_grid.maybe_add_row(auto_placement_cursor_y + row_span);

            // 4.1.1.2. Increment the cursor's row position until a value is found where the grid item does not
            // overlap any occupied grid cells (creating new rows in the implicit grid as necessary).
            while (true) {
                if (!occupation_grid.is_occupied(column_start, auto_placement_cursor_y)) {
                    break;
                }
                auto_placement_cursor_y++;
                occupation_grid.maybe_add_row(auto_placement_cursor_y + row_span);
            }
            // 4.1.1.3. Set the item's row-start line to the cursor's row position, and set the item's row-end
            // line according to its span from that position.
            occupation_grid.set_occupied(column_start, column_start + column_span, auto_placement_cursor_y, auto_placement_cursor_y + row_span);

            positioned_boxes.append({ child_box, auto_placement_cursor_y, row_span, column_start, column_span });
        }
        // 4.1.2. If the item has an automatic grid position in both axes:
        else {
            // 4.1.2.1. Increment the column position of the auto-placement cursor until either this item's grid
            // area does not overlap any occupied grid cells, or the cursor's column position, plus the item's
            // column span, overflow the number of columns in the implicit grid, as determined earlier in this
            // algorithm.
            auto column_start = 0;
            auto column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1;
            auto row_start = 0;
            auto row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1;
            auto found_unoccupied_area = false;
            for (int row_index = auto_placement_cursor_y; row_index < occupation_grid.row_count(); row_index++) {
                for (int column_index = auto_placement_cursor_x; column_index < occupation_grid.column_count(); column_index++) {
                    if (column_span + column_index <= occupation_grid.column_count()) {
                        auto found_all_available = true;
                        for (int span_index = 0; span_index < column_span; span_index++) {
                            if (occupation_grid.is_occupied(column_index + span_index, row_index))
                                found_all_available = false;
                        }
                        if (found_all_available) {
                            found_unoccupied_area = true;
                            column_start = column_index;
                            row_start = row_index;
                            goto finish;
                        }
                    }
                    auto_placement_cursor_x = 0;
                }
                auto_placement_cursor_x = 0;
                auto_placement_cursor_y++;
            }
        finish:

            // 4.1.2.2. If a non-overlapping position was found in the previous step, set the item's row-start
            // and column-start lines to the cursor's position. Otherwise, increment the auto-placement cursor's
            // row position (creating new rows in the implicit grid as necessary), set its column position to the
            // start-most column line in the implicit grid, and return to the previous step.
            if (!found_unoccupied_area) {
                row_start = occupation_grid.row_count();
                occupation_grid.maybe_add_row(occupation_grid.row_count() + 1);
            }

            occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span);
            positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span });
        }
        boxes_to_place.remove(i);
        i--;

        // FIXME: 4.2. For dense packing:
    }

    auto& box_state = m_state.get_mutable(box);
    for (auto& positioned_box : positioned_boxes) {
        auto& child_box_state = m_state.get_mutable(positioned_box.box);
        if (child_box_state.content_height() > positioned_box.computed_height)
            positioned_box.computed_height = child_box_state.content_height();
        if (auto independent_formatting_context = layout_inside(positioned_box.box, LayoutMode::Normal, available_space))
            independent_formatting_context->parent_context_did_dimension_child_root_box();
        if (child_box_state.content_height() > positioned_box.computed_height)
            positioned_box.computed_height = child_box_state.content_height();
    }

    // https://drafts.csswg.org/css-grid/#overview-sizing
    // 2.3. Sizing the Grid
    // Once the grid items have been placed, the sizes of the grid tracks (rows and columns) are
    // calculated, accounting for the sizes of their contents and/or available space as specified in
    // the grid definition.

    // https://drafts.csswg.org/css-grid/#layout-algorithm
    // 12. Grid Sizing
    // This section defines the grid sizing algorithm, which determines the size of all grid tracks and,
    // by extension, the entire grid.

    // Each track has specified minimum and maximum sizing functions (which may be the same). Each
    // sizing function is either:

    // - A fixed sizing function (<length> or resolvable <percentage>).
    // - An intrinsic sizing function (min-content, max-content, auto, fit-content()).
    // - A flexible sizing function (<flex>).

    // The grid sizing algorithm defines how to resolve these sizing constraints into used track sizes.

    struct GridTrack {
        CSS::GridTrackSize min_track_sizing_function;
        CSS::GridTrackSize max_track_sizing_function;
        float base_size { 0 };
        float growth_limit { 0 };
    };
    Vector<GridTrack> grid_rows;
    Vector<GridTrack> grid_columns;

    for (auto& column_size : box.computed_values().grid_template_columns())
        grid_columns.append({ column_size, column_size });
    for (auto& row_size : box.computed_values().grid_template_rows())
        grid_rows.append({ row_size, row_size });

    for (int column_index = grid_columns.size(); column_index < occupation_grid.column_count(); column_index++)
        grid_columns.append({ CSS::GridTrackSize::make_auto(), CSS::GridTrackSize::make_auto() });
    for (int row_index = grid_rows.size(); row_index < occupation_grid.row_count(); row_index++)
        grid_rows.append({ CSS::GridTrackSize::make_auto(), CSS::GridTrackSize::make_auto() });

    // https://drafts.csswg.org/css-grid/#algo-overview
    // 12.1. Grid Sizing Algorithm
    // FIXME: Deals with subgrids, min-content, and justify-content.. not implemented yet

    // https://drafts.csswg.org/css-grid/#algo-track-sizing
    // 12.3. Track Sizing Algorithm

    // The remainder of this section is the track sizing algorithm, which calculates from the min and
    // max track sizing functions the used track size. Each track has a base size, a <length> which
    // grows throughout the algorithm and which will eventually be the track’s final size, and a growth
    // limit, a <length> which provides a desired maximum size for the base size. There are 5 steps:

    // 1. Initialize Track Sizes
    // 2. Resolve Intrinsic Track Sizes
    // 3. Maximize Tracks
    // 4. Expand Flexible Tracks
    // 5. [[#algo-stretch|Expand Stretched auto Tracks]]

    // https://drafts.csswg.org/css-grid/#algo-init
    // 12.4. Initialize Track Sizes

    // Initialize each track’s base size and growth limit.
    for (auto& grid_column : grid_columns) {
        // For each track, if the track’s min track sizing function is:
        switch (grid_column.min_track_sizing_function.type()) {
        // - A fixed sizing function
        // Resolve to an absolute length and use that size as the track’s initial base size.
        // Indefinite lengths cannot occur, as they’re treated as auto.
        case CSS::GridTrackSize::Type::Length:
            if (!grid_column.min_track_sizing_function.length().is_auto())
                grid_column.base_size = grid_column.min_track_sizing_function.length().to_px(box);
            break;
        case CSS::GridTrackSize::Type::Percentage:
            grid_column.base_size = grid_column.min_track_sizing_function.percentage().as_fraction() * box_state.content_width();
            break;
        // - An intrinsic sizing function
        // Use an initial base size of zero.
        case CSS::GridTrackSize::Type::FlexibleLength:
            break;
        default:
            VERIFY_NOT_REACHED();
        }

        // For each track, if the track’s max track sizing function is:
        switch (grid_column.max_track_sizing_function.type()) {
        // - A fixed sizing function
        // Resolve to an absolute length and use that size as the track’s initial growth limit.
        case CSS::GridTrackSize::Type::Length:
            if (!grid_column.max_track_sizing_function.length().is_auto())
                grid_column.growth_limit = grid_column.max_track_sizing_function.length().to_px(box);
            else
                // - An intrinsic sizing function
                // Use an initial growth limit of infinity.
                grid_column.growth_limit = -1;
            break;
        case CSS::GridTrackSize::Type::Percentage:
            grid_column.growth_limit = grid_column.max_track_sizing_function.percentage().as_fraction() * box_state.content_width();
            break;
        // - A flexible sizing function
        // Use an initial growth limit of infinity.
        case CSS::GridTrackSize::Type::FlexibleLength:
            grid_column.growth_limit = -1;
            break;
        default:
            VERIFY_NOT_REACHED();
        }
    }

    // Initialize each track’s base size and growth limit.
    for (auto& grid_row : grid_rows) {
        // For each track, if the track’s min track sizing function is:
        switch (grid_row.min_track_sizing_function.type()) {
        // - A fixed sizing function
        // Resolve to an absolute length and use that size as the track’s initial base size.
        // Indefinite lengths cannot occur, as they’re treated as auto.
        case CSS::GridTrackSize::Type::Length:
            if (!grid_row.min_track_sizing_function.length().is_auto())
                grid_row.base_size = grid_row.min_track_sizing_function.length().to_px(box);
            break;
        case CSS::GridTrackSize::Type::Percentage:
            grid_row.base_size = grid_row.min_track_sizing_function.percentage().as_fraction() * box_state.content_height();
            break;
        // - An intrinsic sizing function
        // Use an initial base size of zero.
        case CSS::GridTrackSize::Type::FlexibleLength:
            break;
        default:
            VERIFY_NOT_REACHED();
        }

        // For each track, if the track’s max track sizing function is:
        switch (grid_row.max_track_sizing_function.type()) {
        // - A fixed sizing function
        // Resolve to an absolute length and use that size as the track’s initial growth limit.
        case CSS::GridTrackSize::Type::Length:
            if (!grid_row.max_track_sizing_function.length().is_auto())
                grid_row.growth_limit = grid_row.max_track_sizing_function.length().to_px(box);
            else
                // - An intrinsic sizing function
                // Use an initial growth limit of infinity.
                grid_row.growth_limit = -1;
            break;
        case CSS::GridTrackSize::Type::Percentage:
            grid_row.growth_limit = grid_row.max_track_sizing_function.percentage().as_fraction() * box_state.content_height();
            break;
        // - A flexible sizing function
        // Use an initial growth limit of infinity.
        case CSS::GridTrackSize::Type::FlexibleLength:
            grid_row.growth_limit = -1;
            break;
        default:
            VERIFY_NOT_REACHED();
        }
    }

    // FIXME: In all cases, if the growth limit is less than the base size, increase the growth limit to match
    // the base size.

    // https://drafts.csswg.org/css-grid/#algo-content
    // 12.5. Resolve Intrinsic Track Sizes
    // This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those
    // sizes based on items that are contained wholly within a single track. Then it gradually adds in
    // the space requirements of items that span multiple tracks, evenly distributing the extra space
    // across those tracks insofar as possible.

    // FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline
    // alignment. For the items in each baseline-sharing group, add a “shim” (effectively, additional
    // margin) on the start/end side (for first/last-baseline alignment) of each item so that, when
    // start/end-aligned together their baselines align as specified.

    // Consider these “shims” as part of the items’ intrinsic size contribution for the purpose of track
    // sizing, below. If an item uses multiple intrinsic size contributions, it can have different shims
    // for each one.

    // 2. Size tracks to fit non-spanning items: For each track with an intrinsic track sizing function and
    // not a flexible sizing function, consider the items in it with a span of 1:
    int index = 0;
    for (auto& grid_column : grid_columns) {
        if (!grid_column.min_track_sizing_function.is_intrinsic_track_sizing()) {
            ++index;
            continue;
        }

        Vector<Box const&> boxes_of_column;
        for (auto& positioned_box : positioned_boxes) {
            if (positioned_box.column == index && positioned_box.column_span == 1)
                boxes_of_column.append(positioned_box.box);
        }

        // - For min-content minimums:
        // If the track has a min-content min track sizing function, set its base size to the maximum of the
        // items’ min-content contributions, floored at zero.
        // FIXME: Not implemented yet min-content.

        // - For max-content minimums:
        // If the track has a max-content min track sizing function, set its base size to the maximum of the
        // items’ max-content contributions, floored at zero.
        // FIXME: Not implemented yet max-content.

        // - For auto minimums:
        // If the track has an auto min track sizing function and the grid container is being sized under a
        // min-/max-content constraint, set the track’s base size to the maximum of its items’ limited
        // min-/max-content contributions (respectively), floored at zero. The limited min-/max-content
        // contribution of an item is (for this purpose) its min-/max-content contribution (accordingly),
        // limited by the max track sizing function (which could be the argument to a fit-content() track
        // sizing function) if that is fixed and ultimately floored by its minimum contribution (defined
        // below).
        // FIXME: Not implemented yet min-/max-content.

        // Otherwise, set the track’s base size to the maximum of its items’ minimum contributions, floored
        // at zero. The minimum contribution of an item is the smallest outer size it can have.
        // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its
        // containing block in the relevant axis, its minimum contribution is the outer size that would
        // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum
        // contribution is its min-content contribution. Because the minimum contribution often depends on
        // the size of the item’s content, it is considered a type of intrinsic size contribution.
        // For items with a specified minimum size of auto (the initial value), the minimum contribution is
        // usually equivalent to the min-content contribution—but can differ in some cases, see § 6.6
        // Automatic Minimum Size of Grid Items. Also, minimum contribution ≤ min-content contribution ≤
        // max-content contribution.
        float grid_column_width = 0;
        for (auto& box_of_column : boxes_of_column)
            grid_column_width = max(grid_column_width, calculate_min_content_width(box_of_column));
        grid_column.base_size = grid_column_width;

        // - For min-content maximums:
        // If the track has a min-content max track sizing function, set its growth limit to the maximum of
        // the items’ min-content contributions.
        // FIXME: Not implemented yet min-content maximums.

        // - For max-content maximums:
        // If the track has a max-content max track sizing function, set its growth limit to the maximum of
        // the items’ max-content contributions. For fit-content() maximums, furthermore clamp this growth
        // limit by the fit-content() argument.
        // FIXME: Not implemented yet max-content maximums.

        // In all cases, if a track’s growth limit is now less than its base size, increase the growth limit
        // to match the base size.
        if (grid_column.growth_limit != -1 && grid_column.growth_limit < grid_column.base_size)
            grid_column.growth_limit = grid_column.base_size;
        ++index;
    }

    index = 0;
    for (auto& grid_row : grid_rows) {
        if (!grid_row.min_track_sizing_function.is_intrinsic_track_sizing()) {
            ++index;
            continue;
        }

        Vector<PositionedBox&> positioned_boxes_of_row;
        for (auto& positioned_box : positioned_boxes) {
            if (positioned_box.row == index && positioned_box.row_span == 1)
                positioned_boxes_of_row.append(positioned_box);
        }

        // - For min-content minimums:
        // If the track has a min-content min track sizing function, set its base size to the maximum of the
        // items’ min-content contributions, floored at zero.
        // FIXME: Not implemented yet min-content.

        // - For max-content minimums:
        // If the track has a max-content min track sizing function, set its base size to the maximum of the
        // items’ max-content contributions, floored at zero.
        // FIXME: Not implemented yet max-content.

        // - For auto minimums:
        // If the track has an auto min track sizing function and the grid container is being sized under a
        // min-/max-content constraint, set the track’s base size to the maximum of its items’ limited
        // min-/max-content contributions (respectively), floored at zero. The limited min-/max-content
        // contribution of an item is (for this purpose) its min-/max-content contribution (accordingly),
        // limited by the max track sizing function (which could be the argument to a fit-content() track
        // sizing function) if that is fixed and ultimately floored by its minimum contribution (defined
        // below).
        // FIXME: Not implemented yet min-/max-content.

        // Otherwise, set the track’s base size to the maximum of its items’ minimum contributions, floored
        // at zero. The minimum contribution of an item is the smallest outer size it can have.
        // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its
        // containing block in the relevant axis, its minimum contribution is the outer size that would
        // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum
        // contribution is its min-content contribution. Because the minimum contribution often depends on
        // the size of the item’s content, it is considered a type of intrinsic size contribution.
        // For items with a specified minimum size of auto (the initial value), the minimum contribution is
        // usually equivalent to the min-content contribution—but can differ in some cases, see § 6.6
        // Automatic Minimum Size of Grid Items. Also, minimum contribution ≤ min-content contribution ≤
        // max-content contribution.
        float grid_row_height = 0;
        for (auto& positioned_box : positioned_boxes_of_row)
            grid_row_height = max(grid_row_height, positioned_box.computed_height);
        grid_row.base_size = grid_row_height;

        // - For min-content maximums:
        // If the track has a min-content max track sizing function, set its growth limit to the maximum of
        // the items’ min-content contributions.
        // FIXME: Not implemented yet min-content maximums.

        // - For max-content maximums:
        // If the track has a max-content max track sizing function, set its growth limit to the maximum of
        // the items’ max-content contributions. For fit-content() maximums, furthermore clamp this growth
        // limit by the fit-content() argument.
        // FIXME: Not implemented yet max-content maximums.

        // In all cases, if a track’s growth limit is now less than its base size, increase the growth limit
        // to match the base size.
        if (grid_row.growth_limit != -1 && grid_row.growth_limit < grid_row.base_size)
            grid_row.growth_limit = grid_row.base_size;
        ++index;
    }

    // 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the
    // items with a span of 2 that do not span a track with a flexible sizing function.
    // FIXME: Content-sized tracks not implemented (min-content, etc.)

    // 3.1. For intrinsic minimums: First distribute extra space to base sizes of tracks with an intrinsic
    // min track sizing function, to accommodate these items’ minimum contributions.

    // If the grid container is being sized under a min- or max-content constraint, use the items’
    // limited min-content contributions in place of their minimum contributions here. (For an item
    // spanning multiple tracks, the upper limit used to calculate its limited min-/max-content
    // contribution is the sum of the fixed max track sizing functions of any tracks it spans, and is
    // applied if it only spans such tracks.)

    // 3.2. For content-based minimums: Next continue to distribute extra space to the base sizes of tracks
    // with a min track sizing function of min-content or max-content, to accommodate these items'
    // min-content contributions.

    // 3.3. For max-content minimums: Next, if the grid container is being sized under a max-content
    // constraint, continue to distribute extra space to the base sizes of tracks with a min track
    // sizing function of auto or max-content, to accommodate these items' limited max-content
    // contributions.

    // In all cases, continue to distribute extra space to the base sizes of tracks with a min track
    // sizing function of max-content, to accommodate these items' max-content contributions.

    // 3.4. If at this point any track’s growth limit is now less than its base size, increase its growth
    // limit to match its base size.

    // 3.5. For intrinsic maximums: Next distribute extra space to the growth limits of tracks with intrinsic
    // max track sizing function, to accommodate these items' min-content contributions. Mark any tracks
    // whose growth limit changed from infinite to finite in this step as infinitely growable for the
    // next step.

    // 3.6. For max-content maximums: Lastly continue to distribute extra space to the growth limits of
    // tracks with a max track sizing function of max-content, to accommodate these items' max-content
    // contributions. However, limit the growth of any fit-content() tracks by their fit-content()
    // argument.

    // Repeat incrementally for items with greater spans until all items have been considered.

    // FIXME: 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous
    // step instead considering (together, rather than grouped by span size) all items that do span a
    // track with a flexible sizing function while distributing space only to flexible tracks (i.e.
    // treating all other tracks as having a fixed sizing function)

    // if the sum of the flexible sizing functions of all flexible tracks spanned by the item is greater
    // than or equal to one, distributing space to such tracks according to the ratios of their flexible
    // sizing functions rather than distributing space equally; and if the sum is less than one,
    // distributing that proportion of space according to the ratios of their flexible sizing functions
    // and the rest equally

    // FIXME: 5. If any track still has an infinite growth limit (because, for example, it had no items placed in
    // it or it is a flexible track), set its growth limit to its base size.

    // https://drafts.csswg.org/css-grid/#extra-space
    // 12.5.1. Distributing Extra Space Across Spanned Tracks

    // 1. Maintain separately for each affected track a planned increase, initially set to 0. (This
    // prevents the size increases from becoming order-dependent.)

    // 2. For each accommodated item, considering only tracks the item spans:

    // 2.1. Find the space to distribute: Subtract the affected size of every spanned track (not just the
    // affected tracks) from the item’s size contribution, flooring it at zero. (For infinite growth
    // limits, substitute the track’s base size.) This remaining size contribution is the space to
    // distribute.
    // space = max(0, size contribution - ∑track-sizes)

    // 2.2. Distribute space up to limits:

    // Find the item-incurred increase for each affected track by: distributing the space equally among
    // these tracks, freezing a track’s item-incurred increase as its affected size + item-incurred
    // increase reaches its limit (and continuing to grow the unfrozen tracks as needed).

    // For base sizes, the limit is its growth limit. For growth limits, the limit is infinity if it is
    // marked as infinitely growable, and equal to the growth limit otherwise.

    // If the affected size was a growth limit and the track is not marked infinitely growable, then each
    // item-incurred increase will be zero.

    // 2.3. Distribute space beyond limits:

    // If extra space remains at this point, unfreeze and continue to distribute space to the
    // item-incurred increase of…

    // - when accommodating minimum contributions or accommodating min-content contributions: any affected
    // track that happens to also have an intrinsic max track sizing function; if there are no such
    // tracks, then all affected tracks.

    // - when accommodating max-content contributions: any affected track that happens to also have a
    // max-content max track sizing function; if there are no such tracks, then all affected tracks.

    // - when handling any intrinsic growth limit: all affected tracks.

    // For this purpose, the max track sizing function of a fit-content() track is treated as
    // max-content until it reaches the limit specified as the fit-content() argument, after which it is
    // treated as having a fixed sizing function of that argument.

    // This step prioritizes the distribution of space for accommodating size contributions beyond the
    // tracks' current growth limits based on the types of their max track sizing functions.

    // 2.4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned
    // increase set the track’s planned increase to that value.

    // 3. Update the tracks' affected sizes by adding in the planned increase, so that the next round of
    // space distribution will account for the increase. (If the affected size is an infinite growth
    // limit, set it to the track’s base size plus the planned increase.)

    // https://drafts.csswg.org/css-grid/#algo-grow-tracks
    // 12.6. Maximize Tracks

    // If the free space is positive, distribute it equally to the base sizes of all tracks, freezing
    // tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed).

    // For the purpose of this step: if sizing the grid container under a max-content constraint, the
    // free space is infinite; if sizing under a min-content constraint, the free space is zero.

    // If this would cause the grid to be larger than the grid container’s inner size as limited by its
    // max-width/height, then redo this step, treating the available grid space as equal to the grid
    // container’s inner size when it’s sized to its max-width/height.
    // FIXME: Do later as at the moment all growth limits are equal to base sizes.

    // https://drafts.csswg.org/css-grid/#algo-flex-tracks
    // 12.7. Expand Flexible Tracks
    // This step sizes flexible tracks using the largest value it can assign to an fr without exceeding
    // the available space.

    // First, find the grid’s used flex fraction:
    auto column_flex_factor_sum = 0;
    for (auto& grid_column : grid_columns) {
        if (grid_column.min_track_sizing_function.is_flexible_length())
            column_flex_factor_sum++;
    }
    // See 12.7.1.
    // Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less
    // than 1, set it to 1 instead.
    if (column_flex_factor_sum < 1)
        column_flex_factor_sum = 1;

    // See 12.7.1.
    float sized_column_widths = 0;
    for (auto& grid_column : grid_columns) {
        if (!grid_column.min_track_sizing_function.is_flexible_length())
            sized_column_widths += grid_column.base_size;
    }
    // Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
    double free_horizontal_space = box_state.content_width() - sized_column_widths;

    // If the free space is zero or if sizing the grid container under a min-content constraint:
    // The used flex fraction is zero.
    // FIXME: Add min-content constraint check.

    // Otherwise, if the free space is a definite length:
    // The used flex fraction is the result of finding the size of an fr using all of the grid tracks
    // and a space to fill of the available grid space.
    if (free_horizontal_space > 0) {
        for (auto& grid_column : grid_columns) {
            if (grid_column.min_track_sizing_function.is_flexible_length()) {
                // See 12.7.1.
                // Let the hypothetical fr size be the leftover space divided by the flex factor sum.
                auto hypothetical_fr_size = static_cast<double>(1.0 / column_flex_factor_sum) * free_horizontal_space;
                // For each flexible track, if the product of the used flex fraction and the track’s flex factor is
                // greater than the track’s base size, set its base size to that product.
                grid_column.base_size = max(grid_column.base_size, hypothetical_fr_size);
            }
        }
    }

    // First, find the grid’s used flex fraction:
    auto row_flex_factor_sum = 0;
    for (auto& grid_row : grid_rows) {
        if (grid_row.min_track_sizing_function.is_flexible_length())
            row_flex_factor_sum++;
    }
    // See 12.7.1.
    // Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less
    // than 1, set it to 1 instead.
    if (row_flex_factor_sum < 1)
        row_flex_factor_sum = 1;

    // See 12.7.1.
    float sized_row_heights = 0;
    for (auto& grid_row : grid_rows) {
        if (!grid_row.min_track_sizing_function.is_flexible_length())
            sized_row_heights += grid_row.base_size;
    }
    // Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
    double free_vertical_space = box_state.content_height() - sized_row_heights;

    // If the free space is zero or if sizing the grid container under a min-content constraint:
    // The used flex fraction is zero.
    // FIXME: Add min-content constraint check.

    // Otherwise, if the free space is a definite length:
    // The used flex fraction is the result of finding the size of an fr using all of the grid tracks
    // and a space to fill of the available grid space.
    if (free_vertical_space > 0) {
        for (auto& grid_row : grid_rows) {
            if (grid_row.min_track_sizing_function.is_flexible_length()) {
                // See 12.7.1.
                // Let the hypothetical fr size be the leftover space divided by the flex factor sum.
                auto hypothetical_fr_size = static_cast<double>(1.0 / row_flex_factor_sum) * free_vertical_space;
                // For each flexible track, if the product of the used flex fraction and the track’s flex factor is
                // greater than the track’s base size, set its base size to that product.
                grid_row.base_size = max(grid_row.base_size, hypothetical_fr_size);
            }
        }
    }

    // Otherwise, if the free space is an indefinite length:
    // FIXME: No tracks will have indefinite length as per current implementation.

    // The used flex fraction is the maximum of:
    // For each flexible track, if the flexible track’s flex factor is greater than one, the result of
    // dividing the track’s base size by its flex factor; otherwise, the track’s base size.

    // For each grid item that crosses a flexible track, the result of finding the size of an fr using
    // all the grid tracks that the item crosses and a space to fill of the item’s max-content
    // contribution.

    // If using this flex fraction would cause the grid to be smaller than the grid container’s
    // min-width/height (or larger than the grid container’s max-width/height), then redo this step,
    // treating the free space as definite and the available grid space as equal to the grid container’s
    // inner size when it’s sized to its min-width/height (max-width/height).

    // For each flexible track, if the product of the used flex fraction and the track’s flex factor is
    // greater than the track’s base size, set its base size to that product.

    // https://drafts.csswg.org/css-grid/#algo-find-fr-size
    // 12.7.1. Find the Size of an fr

    // This algorithm finds the largest size that an fr unit can be without exceeding the target size.
    // It must be called with a set of grid tracks and some quantity of space to fill.

    // 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.

    // 2. Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less
    // than 1, set it to 1 instead.

    // 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum.

    // FIXME: 4. If the product of the hypothetical fr size and a flexible track’s flex factor is less than the
    // track’s base size, restart this algorithm treating all such tracks as inflexible.

    // 5. Return the hypothetical fr size.

    // https://drafts.csswg.org/css-grid/#algo-stretch
    // 12.8. Stretch auto Tracks

    // When the content-distribution property of the grid container is normal or stretch in this axis,
    // this step expands tracks that have an auto max track sizing function by dividing any remaining
    // positive, definite free space equally amongst them. If the free space is indefinite, but the grid
    // container has a definite min-width/height, use that size to calculate the free space for this
    // step instead.
    float used_horizontal_space = 0;
    for (auto& grid_column : grid_columns) {
        if (!(grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto()))
            used_horizontal_space += grid_column.base_size;
    }

    float remaining_horizontal_space = box_state.content_width() - used_horizontal_space;
    auto count_of_auto_max_column_tracks = 0;
    for (auto& grid_column : grid_columns) {
        if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto())
            count_of_auto_max_column_tracks++;
    }
    for (auto& grid_column : grid_columns) {
        if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto())
            grid_column.base_size = max(grid_column.base_size, remaining_horizontal_space / count_of_auto_max_column_tracks);
    }

    float used_vertical_space = 0;
    for (auto& grid_row : grid_rows) {
        if (!(grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto()))
            used_vertical_space += grid_row.base_size;
    }

    float remaining_vertical_space = box_state.content_height() - used_vertical_space;
    auto count_of_auto_max_row_tracks = 0;
    for (auto& grid_row : grid_rows) {
        if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto())
            count_of_auto_max_row_tracks++;
    }
    for (auto& grid_row : grid_rows) {
        if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto())
            grid_row.base_size = max(grid_row.base_size, remaining_vertical_space / count_of_auto_max_row_tracks);
    }

    auto layout_box = [&](int row_start, int row_end, int column_start, int column_end, Box const& child_box) -> void {
        auto& child_box_state = m_state.get_mutable(child_box);
        float x_start = 0;
        float x_end = 0;
        float y_start = 0;
        float y_end = 0;
        for (int i = 0; i < column_start; i++)
            x_start += grid_columns[i].base_size;
        for (int i = 0; i < column_end; i++)
            x_end += grid_columns[i].base_size;
        for (int i = 0; i < row_start; i++)
            y_start += grid_rows[i].base_size;
        for (int i = 0; i < row_end; i++)
            y_end += grid_rows[i].base_size;
        child_box_state.set_content_width(x_end - x_start);
        child_box_state.set_content_height(y_end - y_start);
        child_box_state.offset = { x_start, y_start };
    };

    for (auto& positioned_box : positioned_boxes) {
        auto resolved_span = positioned_box.row + positioned_box.row_span > static_cast<int>(grid_rows.size()) ? static_cast<int>(grid_rows.size()) - positioned_box.row : positioned_box.row_span;
        layout_box(positioned_box.row, positioned_box.row + resolved_span, positioned_box.column, positioned_box.column + positioned_box.column_span, positioned_box.box);
    }

    float total_y = 0;
    for (auto& grid_row : grid_rows)
        total_y += grid_row.base_size;
    m_automatic_content_height = total_y;
}

float GridFormattingContext::automatic_content_height() const
{
    return m_automatic_content_height;
}

bool GridFormattingContext::is_auto_positioned_row(CSS::GridTrackPlacement const& grid_row_start, CSS::GridTrackPlacement const& grid_row_end) const
{
    return is_auto_positioned_track(grid_row_start, grid_row_end);
}

bool GridFormattingContext::is_auto_positioned_column(CSS::GridTrackPlacement const& grid_column_start, CSS::GridTrackPlacement const& grid_column_end) const
{
    return is_auto_positioned_track(grid_column_start, grid_column_end);
}

bool GridFormattingContext::is_auto_positioned_track(CSS::GridTrackPlacement const& grid_track_start, CSS::GridTrackPlacement const& grid_track_end) const
{
    return grid_track_start.is_auto_positioned() && grid_track_end.is_auto_positioned();
}

OccupationGrid::OccupationGrid(int column_count, int row_count)
{
    Vector<bool> occupation_grid_row;
    for (int column_index = 0; column_index < max(column_count, 1); column_index++)
        occupation_grid_row.append(false);
    for (int row_index = 0; row_index < max(row_count, 1); row_index++)
        m_occupation_grid.append(occupation_grid_row);
}

void OccupationGrid::maybe_add_column(int needed_number_of_columns)
{
    if (needed_number_of_columns <= column_count())
        return;
    for (auto& occupation_grid_row : m_occupation_grid)
        for (int idx = 0; idx < (needed_number_of_columns + 1) - column_count(); idx++)
            occupation_grid_row.append(false);
}

void OccupationGrid::maybe_add_row(int needed_number_of_rows)
{
    if (needed_number_of_rows <= row_count())
        return;

    Vector<bool> new_occupation_grid_row;
    for (int idx = 0; idx < column_count(); idx++)
        new_occupation_grid_row.append(false);

    for (int idx = 0; idx < needed_number_of_rows - row_count(); idx++)
        m_occupation_grid.append(new_occupation_grid_row);
}

void OccupationGrid::set_occupied(int column_start, int column_end, int row_start, int row_end)
{
    for (int row_index = 0; row_index < row_count(); row_index++) {
        if (row_index >= row_start && row_index < row_end) {
            for (int column_index = 0; column_index < column_count(); column_index++) {
                if (column_index >= column_start && column_index < column_end)
                    set_occupied(column_index, row_index);
            }
        }
    }
}

void OccupationGrid::set_occupied(int column_index, int row_index)
{
    m_occupation_grid[row_index][column_index] = true;
}

bool OccupationGrid::is_occupied(int column_index, int row_index)
{
    return m_occupation_grid[row_index][column_index];
}

}