summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibWasm/AbstractMachine/AbstractMachine.h
blob: ee3edd66cdb9ba645ddbfa23101e45f765bd908b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*
 * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/HashTable.h>
#include <AK/OwnPtr.h>
#include <AK/Result.h>
#include <LibWasm/Types.h>

namespace Wasm {

class Configuration;
struct Interpreter;

struct InstantiationError {
    String error { "Unknown error" };
};
struct LinkError {
    enum OtherErrors {
        InvalidImportedModule,
    };
    Vector<String> missing_imports;
    Vector<OtherErrors> other_errors;
};

TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, FunctionAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, ExternAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, TableAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, GlobalAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, ElementAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, MemoryAddress);

// FIXME: These should probably be made generic/virtual if/when we decide to do something more
//        fancy than just a dumb interpreter.
class Reference {
public:
    struct Null {
        ValueType type;
    };
    struct Func {
        FunctionAddress address;
    };
    struct Extern {
        ExternAddress address;
    };

    using RefType = Variant<Null, Func, Extern>;
    explicit Reference(RefType ref)
        : m_ref(move(ref))
    {
    }

    auto& ref() const { return m_ref; }

private:
    RefType m_ref;
};

class Value {
public:
    Value()
        : m_value(0)
        , m_type(ValueType::I32)
    {
    }

    using AnyValueType = Variant<i32, i64, float, double, Reference>;
    explicit Value(AnyValueType value)
        : m_value(move(value))
        , m_type(ValueType::I32)
    {
        if (m_value.has<i32>())
            m_type = ValueType { ValueType::I32 };
        else if (m_value.has<i64>())
            m_type = ValueType { ValueType::I64 };
        else if (m_value.has<float>())
            m_type = ValueType { ValueType::F32 };
        else if (m_value.has<double>())
            m_type = ValueType { ValueType::F64 };
        else if (m_value.has<Reference>() && m_value.get<Reference>().ref().has<Reference::Func>())
            m_type = ValueType { ValueType::FunctionReference };
        else if (m_value.has<Reference>() && m_value.get<Reference>().ref().has<Reference::Extern>())
            m_type = ValueType { ValueType::ExternReference };
        else if (m_value.has<Reference>())
            m_type = m_value.get<Reference>().ref().get<Reference::Null>().type;
        else
            VERIFY_NOT_REACHED();
    }

    template<typename T>
    requires(sizeof(T) == sizeof(u64)) explicit Value(ValueType type, T raw_value)
        : m_value(0)
        , m_type(type)
    {
        switch (type.kind()) {
        case ValueType::Kind::ExternReference:
            m_value = Reference { Reference::Extern { { bit_cast<u64>(raw_value) } } };
            break;
        case ValueType::Kind::FunctionReference:
            m_value = Reference { Reference::Func { { bit_cast<u64>(raw_value) } } };
            break;
        case ValueType::Kind::I32:
            m_value = static_cast<i32>(bit_cast<i64>(raw_value));
            break;
        case ValueType::Kind::I64:
            m_value = static_cast<i64>(bit_cast<u64>(raw_value));
            break;
        case ValueType::Kind::F32:
            m_value = static_cast<float>(bit_cast<double>(raw_value));
            break;
        case ValueType::Kind::F64:
            m_value = bit_cast<double>(raw_value);
            break;
        case ValueType::Kind::NullFunctionReference:
            VERIFY(raw_value == 0);
            m_value = Reference { Reference::Null { ValueType(ValueType::Kind::FunctionReference) } };
            break;
        case ValueType::Kind::NullExternReference:
            VERIFY(raw_value == 0);
            m_value = Reference { Reference::Null { ValueType(ValueType::Kind::ExternReference) } };
            break;
        default:
            VERIFY_NOT_REACHED();
        }
    }

    Value(const Value& value)
        : m_value(AnyValueType { value.m_value })
        , m_type(value.m_type)
    {
    }

    Value(Value&& value)
        : m_value(move(value.m_value))
        , m_type(move(value.m_type))
    {
    }

    Value& operator=(Value&& value)
    {
        m_value = move(value.m_value);
        m_type = move(value.m_type);
        return *this;
    }

    Value& operator=(const Value& value)
    {
        m_value = value.m_value;
        m_type = value.m_type;
        return *this;
    }

    template<typename T>
    Optional<T> to()
    {
        Optional<T> result;
        m_value.visit(
            [&](auto value) {
                if constexpr (IsSame<T, decltype(value)>)
                    result = value;
                else if constexpr (!IsFloatingPoint<T> && IsSame<decltype(value), MakeSigned<T>>)
                    result = value;
            },
            [&](const Reference& value) {
                if constexpr (IsSame<T, Reference>) {
                    result = value;
                } else if constexpr (IsSame<T, Reference::Func>) {
                    if (auto ptr = value.ref().template get_pointer<Reference::Func>())
                        result = *ptr;
                } else if constexpr (IsSame<T, Reference::Extern>) {
                    if (auto ptr = value.ref().template get_pointer<Reference::Extern>())
                        result = *ptr;
                } else if constexpr (IsSame<T, Reference::Null>) {
                    if (auto ptr = value.ref().template get_pointer<Reference::Null>())
                        result = *ptr;
                }
            });
        return result;
    }

    auto& type() const { return m_type; }
    auto& value() const { return m_value; }

private:
    AnyValueType m_value;
    ValueType m_type;
};

struct Trap {
    // Empty value type
};

class Result {
public:
    explicit Result(Vector<Value> values)
        : m_values(move(values))
    {
    }

    Result(Trap)
        : m_is_trap(true)
    {
    }

    auto& values() const { return m_values; }
    auto& values() { return m_values; }
    auto is_trap() const { return m_is_trap; }

private:
    Vector<Value> m_values;
    bool m_is_trap { false };
};

using ExternValue = Variant<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress>;

class ExportInstance {
public:
    explicit ExportInstance(String name, ExternValue value)
        : m_name(move(name))
        , m_value(move(value))
    {
    }

    auto& name() const { return m_name; }
    auto& value() const { return m_value; }

private:
    String m_name;
    ExternValue m_value;
};

class ModuleInstance {
public:
    explicit ModuleInstance(
        Vector<FunctionType> types, Vector<FunctionAddress> function_addresses, Vector<TableAddress> table_addresses,
        Vector<MemoryAddress> memory_addresses, Vector<GlobalAddress> global_addresses, Vector<ExportInstance> exports)
        : m_types(move(types))
        , m_functions(move(function_addresses))
        , m_tables(move(table_addresses))
        , m_memories(move(memory_addresses))
        , m_globals(move(global_addresses))
        , m_exports(move(exports))
    {
    }

    ModuleInstance() = default;

    auto& types() const { return m_types; }
    auto& functions() const { return m_functions; }
    auto& tables() const { return m_tables; }
    auto& memories() const { return m_memories; }
    auto& globals() const { return m_globals; }
    auto& elements() const { return m_elements; }
    auto& exports() const { return m_exports; }

    auto& types() { return m_types; }
    auto& functions() { return m_functions; }
    auto& tables() { return m_tables; }
    auto& memories() { return m_memories; }
    auto& globals() { return m_globals; }
    auto& elements() { return m_elements; }
    auto& exports() { return m_exports; }

private:
    Vector<FunctionType> m_types;
    Vector<FunctionAddress> m_functions;
    Vector<TableAddress> m_tables;
    Vector<MemoryAddress> m_memories;
    Vector<GlobalAddress> m_globals;
    Vector<ElementAddress> m_elements;
    Vector<ExportInstance> m_exports;
};

class WasmFunction {
public:
    explicit WasmFunction(const FunctionType& type, const ModuleInstance& module, const Module::Function& code)
        : m_type(type)
        , m_module(module)
        , m_code(code)
    {
    }

    auto& type() const { return m_type; }
    auto& module() const { return m_module; }
    auto& code() const { return m_code; }

private:
    FunctionType m_type;
    const ModuleInstance& m_module;
    const Module::Function& m_code;
};

class HostFunction {
public:
    explicit HostFunction(AK::Function<Result(Configuration&, Vector<Value>&)> function, const FunctionType& type)
        : m_function(move(function))
        , m_type(type)
    {
    }

    auto& function() { return m_function; }
    auto& type() const { return m_type; }

private:
    AK::Function<Result(Configuration&, Vector<Value>&)> m_function;
    FunctionType m_type;
};

using FunctionInstance = Variant<WasmFunction, HostFunction>;

class TableInstance {
public:
    explicit TableInstance(const TableType& type, Vector<Optional<Reference>> elements)
        : m_elements(move(elements))
        , m_type(type)
    {
    }

    auto& elements() const { return m_elements; }
    auto& elements() { return m_elements; }
    auto& type() const { return m_type; }

private:
    Vector<Optional<Reference>> m_elements;
    const TableType& m_type;
};

class MemoryInstance {
public:
    explicit MemoryInstance(const MemoryType& type)
        : m_type(type)
    {
        grow(m_type.limits().min() * Constants::page_size);
    }

    auto& type() const { return m_type; }
    auto size() const { return m_size; }
    auto& data() const { return m_data; }
    auto& data() { return m_data; }

    bool grow(size_t size_to_grow)
    {
        if (size_to_grow == 0)
            return true;
        auto new_size = m_data.size() + size_to_grow;
        if (m_type.limits().max().value_or(new_size) < new_size)
            return false;
        auto previous_size = m_size;
        m_data.resize(new_size);
        m_size = new_size;
        // The spec requires that we zero out everything on grow
        __builtin_memset(m_data.offset_pointer(previous_size), 0, size_to_grow);
        return true;
    }

private:
    const MemoryType& m_type;
    size_t m_size { 0 };
    ByteBuffer m_data;
};

class GlobalInstance {
public:
    explicit GlobalInstance(Value value, bool is_mutable)
        : m_mutable(is_mutable)
        , m_value(move(value))
    {
    }

    auto is_mutable() const { return m_mutable; }
    auto& value() const { return m_value; }
    void set_value(Value value)
    {
        VERIFY(is_mutable());
        m_value = move(value);
    }

private:
    bool m_mutable { false };
    Value m_value;
};

class ElementInstance {
public:
    explicit ElementInstance(ValueType type, Vector<Reference> references)
        : m_type(move(type))
        , m_references(move(references))
    {
    }

    auto& type() const { return m_type; }
    auto& references() const { return m_references; }

private:
    ValueType m_type;
    Vector<Reference> m_references;
};

class Store {
public:
    Store() = default;

    Optional<FunctionAddress> allocate(ModuleInstance& module, const Module::Function& function);
    Optional<FunctionAddress> allocate(HostFunction&&);
    Optional<TableAddress> allocate(const TableType&);
    Optional<MemoryAddress> allocate(const MemoryType&);
    Optional<GlobalAddress> allocate(const GlobalType&, Value);
    Optional<ElementAddress> allocate(const ValueType&, Vector<Reference>);

    FunctionInstance* get(FunctionAddress);
    TableInstance* get(TableAddress);
    MemoryInstance* get(MemoryAddress);
    GlobalInstance* get(GlobalAddress);
    ElementInstance* get(ElementAddress);

private:
    Vector<FunctionInstance> m_functions;
    Vector<TableInstance> m_tables;
    Vector<MemoryInstance> m_memories;
    Vector<GlobalInstance> m_globals;
    Vector<ElementInstance> m_elements;
};

class Label {
public:
    explicit Label(size_t arity, InstructionPointer continuation)
        : m_arity(arity)
        , m_continuation(continuation)
    {
    }

    auto continuation() const { return m_continuation; }
    auto arity() const { return m_arity; }

private:
    size_t m_arity { 0 };
    InstructionPointer m_continuation { 0 };
};

class Frame {
public:
    explicit Frame(const ModuleInstance& module, Vector<Value> locals, const Expression& expression, size_t arity)
        : m_module(module)
        , m_locals(move(locals))
        , m_expression(expression)
        , m_arity(arity)
    {
    }

    auto& module() const { return m_module; }
    auto& locals() const { return m_locals; }
    auto& locals() { return m_locals; }
    auto& expression() const { return m_expression; }
    auto arity() const { return m_arity; }

private:
    const ModuleInstance& m_module;
    Vector<Value> m_locals;
    const Expression& m_expression;
    size_t m_arity { 0 };
};

class Stack {
public:
    using EntryType = Variant<Value, Label, Frame>;
    Stack() = default;

    [[nodiscard]] ALWAYS_INLINE bool is_empty() const { return m_data.is_empty(); }
    FLATTEN void push(EntryType entry) { m_data.append(move(entry)); }
    FLATTEN auto pop() { return m_data.take_last(); }
    FLATTEN auto& peek() const { return m_data.last(); }
    FLATTEN auto& peek() { return m_data.last(); }

    ALWAYS_INLINE auto size() const { return m_data.size(); }
    ALWAYS_INLINE auto& entries() const { return m_data; }
    ALWAYS_INLINE auto& entries() { return m_data; }

private:
    Vector<EntryType, 1024> m_data;
};

using InstantiationResult = AK::Result<NonnullOwnPtr<ModuleInstance>, InstantiationError>;

class AbstractMachine {
public:
    explicit AbstractMachine() = default;

    // Load and instantiate a module, and link it into this interpreter.
    InstantiationResult instantiate(const Module&, Vector<ExternValue>);
    Result invoke(FunctionAddress, Vector<Value>);
    Result invoke(Interpreter&, FunctionAddress, Vector<Value>);

    auto& store() const { return m_store; }
    auto& store() { return m_store; }

private:
    Optional<InstantiationError> allocate_all_initial_phase(const Module&, ModuleInstance&, Vector<ExternValue>&, Vector<Value>& global_values);
    Optional<InstantiationError> allocate_all_final_phase(const Module&, ModuleInstance&, Vector<Vector<Reference>>& elements);
    Store m_store;
};

class Linker {
public:
    struct Name {
        String module;
        String name;
        ImportSection::Import::ImportDesc type;
    };

    explicit Linker(const Module& module)
        : m_module(module)
    {
    }

    // Link a module, the import 'module name' is ignored with this.
    void link(const ModuleInstance&);

    // Link a bunch of qualified values, also matches 'module name'.
    void link(const HashMap<Name, ExternValue>&);

    auto& unresolved_imports()
    {
        populate();
        return m_unresolved_imports;
    }

    AK::Result<Vector<ExternValue>, LinkError> finish();

private:
    void populate();

    const Module& m_module;
    HashMap<Name, ExternValue> m_resolved_imports;
    HashTable<Name> m_unresolved_imports;
    Vector<Name> m_ordered_imports;
    Optional<LinkError> m_error;
};

}

template<>
struct AK::Traits<Wasm::Linker::Name> : public AK::GenericTraits<Wasm::Linker::Name> {
    static constexpr bool is_trivial() { return false; }
    static unsigned hash(const Wasm::Linker::Name& entry) { return pair_int_hash(entry.module.hash(), entry.name.hash()); }
    static bool equals(const Wasm::Linker::Name& a, const Wasm::Linker::Name& b) { return a.name == b.name && a.module == b.module; }
};