1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Interpreter.h"
#include <LibWasm/AbstractMachine/AbstractMachine.h>
#include <LibWasm/AbstractMachine/Configuration.h>
#include <LibWasm/Types.h>
namespace Wasm {
Optional<FunctionAddress> Store::allocate(ModuleInstance& module, const Module::Function& function)
{
FunctionAddress address { m_functions.size() };
if (function.type().value() > module.types().size())
return {};
auto& type = module.types()[function.type().value()];
m_functions.empend(WasmFunction { type, module, function });
return address;
}
Optional<FunctionAddress> Store::allocate(HostFunction&& function)
{
FunctionAddress address { m_functions.size() };
m_functions.empend(HostFunction { move(function) });
return address;
}
Optional<TableAddress> Store::allocate(const TableType& type)
{
TableAddress address { m_tables.size() };
Vector<Optional<Reference>> elements;
elements.resize(type.limits().min());
m_tables.empend(TableInstance { type, move(elements) });
return address;
}
Optional<MemoryAddress> Store::allocate(const MemoryType& type)
{
MemoryAddress address { m_memories.size() };
m_memories.empend(MemoryInstance { type });
return address;
}
Optional<GlobalAddress> Store::allocate(const GlobalType& type, Value value)
{
GlobalAddress address { m_globals.size() };
m_globals.append(GlobalInstance { move(value), type.is_mutable() });
return address;
}
FunctionInstance* Store::get(FunctionAddress address)
{
auto value = address.value();
if (m_functions.size() <= value)
return nullptr;
return &m_functions[value];
}
TableInstance* Store::get(TableAddress address)
{
auto value = address.value();
if (m_tables.size() <= value)
return nullptr;
return &m_tables[value];
}
MemoryInstance* Store::get(MemoryAddress address)
{
auto value = address.value();
if (m_memories.size() <= value)
return nullptr;
return &m_memories[value];
}
GlobalInstance* Store::get(GlobalAddress address)
{
auto value = address.value();
if (m_globals.size() <= value)
return nullptr;
return &m_globals[value];
}
InstantiationResult AbstractMachine::instantiate(const Module& module, Vector<ExternValue> externs)
{
auto main_module_instance_pointer = make<ModuleInstance>();
auto& main_module_instance = *main_module_instance_pointer;
Optional<InstantiationResult> instantiation_result;
module.for_each_section_of_type<TypeSection>([&](const TypeSection& section) {
main_module_instance.types() = section.types();
});
// FIXME: Validate stuff
Vector<Value> global_values;
ModuleInstance auxiliary_instance;
// FIXME: Check that imports/extern match
for (auto& entry : externs) {
if (auto* ptr = entry.get_pointer<GlobalAddress>())
auxiliary_instance.globals().append(*ptr);
}
BytecodeInterpreter interpreter;
module.for_each_section_of_type<GlobalSection>([&](auto& global_section) {
for (auto& entry : global_section.entries()) {
Configuration config { m_store };
config.set_frame(Frame {
auxiliary_instance,
Vector<Value> {},
entry.expression(),
1,
});
auto result = config.execute(interpreter);
// What if this traps?
if (result.is_trap())
instantiation_result = InstantiationError { "Global value construction trapped" };
else
global_values.append(result.values().first());
}
});
if (auto result = allocate_all(module, main_module_instance, externs, global_values); result.has_value()) {
return result.release_value();
}
module.for_each_section_of_type<ElementSection>([&](const ElementSection&) {
// FIXME: Implement me
// https://webassembly.github.io/spec/core/bikeshed/#element-segments%E2%91%A0
// https://webassembly.github.io/spec/core/bikeshed/#instantiation%E2%91%A1 step 9
});
module.for_each_section_of_type<DataSection>([&](const DataSection& data_section) {
for (auto& segment : data_section.data()) {
segment.value().visit(
[&](const DataSection::Data::Active& data) {
Configuration config { m_store };
config.set_frame(Frame {
main_module_instance,
Vector<Value> {},
data.offset,
1,
});
auto result = config.execute(interpreter);
size_t offset = 0;
result.values().first().value().visit(
[&](const auto& value) { offset = value; },
[&](const FunctionAddress&) { instantiation_result = InstantiationError { "Data segment offset returned an address" }; },
[&](const ExternAddress&) { instantiation_result = InstantiationError { "Data segment offset returned an address" }; },
[&](const Value::Null&) { instantiation_result = InstantiationError { "Data segment offset returned a null reference" }; });
if (instantiation_result.has_value() && instantiation_result->is_error())
return;
if (main_module_instance.memories().size() <= data.index.value()) {
instantiation_result = InstantiationError { String::formatted("Data segment referenced out-of-bounds memory ({}) of max {} entries", data.index.value(), main_module_instance.memories().size()) };
return;
}
auto address = main_module_instance.memories()[data.index.value()];
if (auto instance = m_store.get(address)) {
if (instance->type().limits().max().value_or(data.init.size() + offset + 1) <= data.init.size() + offset) {
instantiation_result = InstantiationError { String::formatted("Data segment attempted to write to out-of-bounds memory ({}) of max {} bytes", data.init.size() + offset, instance->type().limits().max().value()) };
return;
}
if (instance->size() < data.init.size() + offset)
instance->grow(data.init.size() + offset - instance->size());
instance->data().overwrite(offset, data.init.data(), data.init.size());
}
},
[&](const DataSection::Data::Passive&) {
// FIXME: What do we do here?
});
}
});
module.for_each_section_of_type<StartSection>([&](const StartSection& section) {
auto& functions = main_module_instance.functions();
auto index = section.function().index();
if (functions.size() <= index.value()) {
instantiation_result = InstantiationError { String::formatted("Start section function referenced invalid index {} of max {} entries", index.value(), functions.size()) };
return;
}
invoke(functions[index.value()], {});
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
return InstantiationResult { move(main_module_instance_pointer) };
}
Optional<InstantiationError> AbstractMachine::allocate_all(const Module& module, ModuleInstance& module_instance, Vector<ExternValue>& externs, Vector<Value>& global_values)
{
Optional<InstantiationError> result;
for (auto& entry : externs) {
entry.visit(
[&](const FunctionAddress& address) { module_instance.functions().append(address); },
[&](const TableAddress& address) { module_instance.tables().append(address); },
[&](const MemoryAddress& address) { module_instance.memories().append(address); },
[&](const GlobalAddress& address) { module_instance.globals().append(address); });
}
// FIXME: What if this fails?
for (auto& func : module.functions()) {
auto address = m_store.allocate(module_instance, func);
VERIFY(address.has_value());
module_instance.functions().append(*address);
}
module.for_each_section_of_type<TableSection>([&](const TableSection& section) {
for (auto& table : section.tables()) {
auto table_address = m_store.allocate(table.type());
VERIFY(table_address.has_value());
module_instance.tables().append(*table_address);
}
});
module.for_each_section_of_type<MemorySection>([&](const MemorySection& section) {
for (auto& memory : section.memories()) {
auto memory_address = m_store.allocate(memory.type());
VERIFY(memory_address.has_value());
module_instance.memories().append(*memory_address);
}
});
module.for_each_section_of_type<GlobalSection>([&](const GlobalSection& section) {
size_t index = 0;
for (auto& entry : section.entries()) {
auto address = m_store.allocate(entry.type(), global_values[index]);
VERIFY(address.has_value());
module_instance.globals().append(*address);
index++;
}
});
module.for_each_section_of_type<ExportSection>([&](const ExportSection& section) {
for (auto& entry : section.entries()) {
Variant<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress, Empty> address { Empty {} };
entry.description().visit(
[&](const FunctionIndex& index) {
if (module_instance.functions().size() > index.value())
address = FunctionAddress { module_instance.functions()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.functions().size());
},
[&](const TableIndex& index) {
if (module_instance.tables().size() > index.value())
address = TableAddress { module_instance.tables()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.tables().size());
},
[&](const MemoryIndex& index) {
if (module_instance.memories().size() > index.value())
address = MemoryAddress { module_instance.memories()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.memories().size());
},
[&](const GlobalIndex& index) {
if (module_instance.globals().size() > index.value())
address = GlobalAddress { module_instance.globals()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.globals().size());
});
if (address.has<Empty>()) {
result = InstantiationError { "An export could not be resolved" };
continue;
}
module_instance.exports().append(ExportInstance {
entry.name(),
move(address).downcast<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress>(),
});
}
});
return result;
}
Result AbstractMachine::invoke(FunctionAddress address, Vector<Value> arguments)
{
BytecodeInterpreter interpreter;
return invoke(interpreter, address, move(arguments));
}
Result AbstractMachine::invoke(Interpreter& interpreter, FunctionAddress address, Vector<Value> arguments)
{
Configuration configuration { m_store };
return configuration.call(interpreter, address, move(arguments));
}
void Linker::link(const ModuleInstance& instance)
{
populate();
if (m_unresolved_imports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto it = instance.exports().find_if([&](auto& export_) { return export_.name() == import_.name; });
if (!it.is_end()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, it->value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
void Linker::link(const HashMap<Linker::Name, ExternValue>& exports)
{
populate();
if (m_unresolved_imports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto export_ = exports.get(import_);
if (export_.has_value()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, export_.value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
AK::Result<Vector<ExternValue>, LinkError> Linker::finish()
{
populate();
if (!m_unresolved_imports.is_empty()) {
if (!m_error.has_value())
m_error = LinkError {};
for (auto& entry : m_unresolved_imports)
m_error->missing_imports.append(entry.name);
return *m_error;
}
if (m_error.has_value())
return *m_error;
// Result must be in the same order as the module imports
Vector<ExternValue> exports;
exports.ensure_capacity(m_ordered_imports.size());
for (auto& import_ : m_ordered_imports)
exports.unchecked_append(*m_resolved_imports.get(import_));
return exports;
}
void Linker::populate()
{
if (!m_ordered_imports.is_empty())
return;
// There better be at most one import section!
bool already_seen_an_import_section = false;
m_module.for_each_section_of_type<ImportSection>([&](const ImportSection& section) {
if (already_seen_an_import_section) {
if (!m_error.has_value())
m_error = LinkError {};
m_error->other_errors.append(LinkError::InvalidImportedModule);
return;
}
already_seen_an_import_section = true;
for (auto& import_ : section.imports()) {
m_ordered_imports.append({ import_.module(), import_.name(), import_.description() });
m_unresolved_imports.set(m_ordered_imports.last());
}
});
}
}
|