1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Interpreter.h"
#include <LibWasm/AbstractMachine/AbstractMachine.h>
#include <LibWasm/AbstractMachine/Configuration.h>
#include <LibWasm/Types.h>
namespace Wasm {
Optional<FunctionAddress> Store::allocate(ModuleInstance& module, Module::Function const& function)
{
FunctionAddress address { m_functions.size() };
if (function.type().value() > module.types().size())
return {};
auto& type = module.types()[function.type().value()];
m_functions.empend(WasmFunction { type, module, function });
return address;
}
Optional<FunctionAddress> Store::allocate(HostFunction&& function)
{
FunctionAddress address { m_functions.size() };
m_functions.empend(HostFunction { move(function) });
return address;
}
Optional<TableAddress> Store::allocate(TableType const& type)
{
TableAddress address { m_tables.size() };
Vector<Optional<Reference>> elements;
elements.resize(type.limits().min());
m_tables.empend(TableInstance { type, move(elements) });
return address;
}
Optional<MemoryAddress> Store::allocate(MemoryType const& type)
{
MemoryAddress address { m_memories.size() };
m_memories.empend(MemoryInstance { type });
return address;
}
Optional<GlobalAddress> Store::allocate(GlobalType const& type, Value value)
{
GlobalAddress address { m_globals.size() };
m_globals.append(GlobalInstance { move(value), type.is_mutable() });
return address;
}
Optional<ElementAddress> Store::allocate(ValueType const& type, Vector<Reference> references)
{
ElementAddress address { m_elements.size() };
m_elements.append(ElementInstance { type, move(references) });
return address;
}
FunctionInstance* Store::get(FunctionAddress address)
{
auto value = address.value();
if (m_functions.size() <= value)
return nullptr;
return &m_functions[value];
}
TableInstance* Store::get(TableAddress address)
{
auto value = address.value();
if (m_tables.size() <= value)
return nullptr;
return &m_tables[value];
}
MemoryInstance* Store::get(MemoryAddress address)
{
auto value = address.value();
if (m_memories.size() <= value)
return nullptr;
return &m_memories[value];
}
GlobalInstance* Store::get(GlobalAddress address)
{
auto value = address.value();
if (m_globals.size() <= value)
return nullptr;
return &m_globals[value];
}
ElementInstance* Store::get(ElementAddress address)
{
auto value = address.value();
if (m_elements.size() <= value)
return nullptr;
return &m_elements[value];
}
InstantiationResult AbstractMachine::instantiate(Module const& module, Vector<ExternValue> externs)
{
auto main_module_instance_pointer = make<ModuleInstance>();
auto& main_module_instance = *main_module_instance_pointer;
Optional<InstantiationResult> instantiation_result;
module.for_each_section_of_type<TypeSection>([&](TypeSection const& section) {
main_module_instance.types() = section.types();
});
// FIXME: Validate stuff
Vector<Value> global_values;
Vector<Vector<Reference>> elements;
ModuleInstance auxiliary_instance;
// FIXME: Check that imports/extern match
for (auto& entry : externs) {
if (auto* ptr = entry.get_pointer<GlobalAddress>())
auxiliary_instance.globals().append(*ptr);
}
BytecodeInterpreter interpreter;
module.for_each_section_of_type<GlobalSection>([&](auto& global_section) {
for (auto& entry : global_section.entries()) {
Configuration config { m_store };
config.set_frame(Frame {
auxiliary_instance,
Vector<Value> {},
entry.expression(),
1,
});
auto result = config.execute(interpreter);
if (result.is_trap())
instantiation_result = InstantiationError { "Global value construction trapped" };
else
global_values.append(result.values().first());
}
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
if (auto result = allocate_all_initial_phase(module, main_module_instance, externs, global_values); result.has_value())
return result.release_value();
module.for_each_section_of_type<ElementSection>([&](ElementSection const& section) {
for (auto& segment : section.segments()) {
Vector<Reference> references;
for (auto& entry : segment.init) {
Configuration config { m_store };
config.set_frame(Frame {
main_module_instance,
Vector<Value> {},
entry,
entry.instructions().size(),
});
auto result = config.execute(interpreter);
if (result.is_trap()) {
instantiation_result = InstantiationError { "Element construction trapped" };
return IterationDecision::Continue;
}
for (auto& value : result.values()) {
if (!value.type().is_reference()) {
instantiation_result = InstantiationError { "Evaluated element entry is not a reference" };
return IterationDecision::Continue;
}
auto reference = value.to<Reference>();
if (!reference.has_value()) {
instantiation_result = InstantiationError { "Evaluated element entry does not contain a reference" };
return IterationDecision::Continue;
}
// FIXME: type-check the reference.
references.prepend(reference.release_value());
}
}
elements.append(move(references));
}
return IterationDecision::Continue;
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
if (auto result = allocate_all_final_phase(module, main_module_instance, elements); result.has_value())
return result.release_value();
module.for_each_section_of_type<ElementSection>([&](ElementSection const& section) {
size_t index = 0;
for (auto& segment : section.segments()) {
auto current_index = index;
++index;
auto active_ptr = segment.mode.get_pointer<ElementSection::Active>();
if (!active_ptr)
continue;
if (active_ptr->index.value() != 0) {
instantiation_result = InstantiationError { "Non-zero table referenced by active element segment" };
return IterationDecision::Break;
}
Configuration config { m_store };
config.set_frame(Frame {
main_module_instance,
Vector<Value> {},
active_ptr->expression,
1,
});
auto result = config.execute(interpreter);
if (result.is_trap()) {
instantiation_result = InstantiationError { "Element section initialisation trapped" };
return IterationDecision::Break;
}
auto d = result.values().first().to<i32>();
if (!d.has_value()) {
instantiation_result = InstantiationError { "Element section initialisation returned invalid table initial offset" };
return IterationDecision::Break;
}
if (main_module_instance.tables().size() < 1) {
instantiation_result = InstantiationError { "Element section initialisation references nonexistent table" };
return IterationDecision::Break;
}
auto table_instance = m_store.get(main_module_instance.tables()[0]);
if (current_index >= main_module_instance.elements().size()) {
instantiation_result = InstantiationError { "Invalid element referenced by active element segment" };
return IterationDecision::Break;
}
auto elem_instance = m_store.get(main_module_instance.elements()[current_index]);
if (!table_instance || !elem_instance) {
instantiation_result = InstantiationError { "Invalid element referenced by active element segment" };
return IterationDecision::Break;
}
auto total_required_size = elem_instance->references().size() + d.value();
if (table_instance->type().limits().max().value_or(total_required_size) < total_required_size) {
instantiation_result = InstantiationError { "Table limit overflow in active element segment" };
return IterationDecision::Break;
}
if (table_instance->elements().size() < total_required_size)
table_instance->elements().resize(total_required_size);
size_t i = 0;
for (auto it = elem_instance->references().begin(); it < elem_instance->references().end(); ++i, ++it) {
table_instance->elements()[i + d.value()] = *it;
}
}
return IterationDecision::Continue;
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
module.for_each_section_of_type<DataSection>([&](DataSection const& data_section) {
for (auto& segment : data_section.data()) {
segment.value().visit(
[&](DataSection::Data::Active const& data) {
Configuration config { m_store };
config.set_frame(Frame {
main_module_instance,
Vector<Value> {},
data.offset,
1,
});
auto result = config.execute(interpreter);
if (result.is_trap()) {
instantiation_result = InstantiationError { "Data section initialisation trapped" };
return;
}
size_t offset = 0;
result.values().first().value().visit(
[&](auto const& value) { offset = value; },
[&](Reference const&) { instantiation_result = InstantiationError { "Data segment offset returned a reference" }; });
if (instantiation_result.has_value() && instantiation_result->is_error())
return;
if (main_module_instance.memories().size() <= data.index.value()) {
instantiation_result = InstantiationError { String::formatted("Data segment referenced out-of-bounds memory ({}) of max {} entries", data.index.value(), main_module_instance.memories().size()) };
return;
}
auto address = main_module_instance.memories()[data.index.value()];
if (auto instance = m_store.get(address)) {
if (instance->type().limits().max().value_or(data.init.size() + offset + 1) <= data.init.size() + offset) {
instantiation_result = InstantiationError { String::formatted("Data segment attempted to write to out-of-bounds memory ({}) of max {} bytes", data.init.size() + offset, instance->type().limits().max().value()) };
return;
}
if (instance->size() < data.init.size() + offset)
instance->grow(data.init.size() + offset - instance->size());
instance->data().overwrite(offset, data.init.data(), data.init.size());
}
},
[&](DataSection::Data::Passive const&) {
// FIXME: What do we do here?
});
}
});
module.for_each_section_of_type<StartSection>([&](StartSection const& section) {
auto& functions = main_module_instance.functions();
auto index = section.function().index();
if (functions.size() <= index.value()) {
instantiation_result = InstantiationError { String::formatted("Start section function referenced invalid index {} of max {} entries", index.value(), functions.size()) };
return;
}
invoke(functions[index.value()], {});
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
return InstantiationResult { move(main_module_instance_pointer) };
}
Optional<InstantiationError> AbstractMachine::allocate_all_initial_phase(Module const& module, ModuleInstance& module_instance, Vector<ExternValue>& externs, Vector<Value>& global_values)
{
Optional<InstantiationError> result;
for (auto& entry : externs) {
entry.visit(
[&](FunctionAddress const& address) { module_instance.functions().append(address); },
[&](TableAddress const& address) { module_instance.tables().append(address); },
[&](MemoryAddress const& address) { module_instance.memories().append(address); },
[&](GlobalAddress const& address) { module_instance.globals().append(address); });
}
// FIXME: What if this fails?
for (auto& func : module.functions()) {
auto address = m_store.allocate(module_instance, func);
VERIFY(address.has_value());
module_instance.functions().append(*address);
}
module.for_each_section_of_type<TableSection>([&](TableSection const& section) {
for (auto& table : section.tables()) {
auto table_address = m_store.allocate(table.type());
VERIFY(table_address.has_value());
module_instance.tables().append(*table_address);
}
});
module.for_each_section_of_type<MemorySection>([&](MemorySection const& section) {
for (auto& memory : section.memories()) {
auto memory_address = m_store.allocate(memory.type());
VERIFY(memory_address.has_value());
module_instance.memories().append(*memory_address);
}
});
module.for_each_section_of_type<GlobalSection>([&](GlobalSection const& section) {
size_t index = 0;
for (auto& entry : section.entries()) {
auto address = m_store.allocate(entry.type(), move(global_values[index]));
VERIFY(address.has_value());
module_instance.globals().append(*address);
index++;
}
});
module.for_each_section_of_type<ExportSection>([&](ExportSection const& section) {
for (auto& entry : section.entries()) {
Variant<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress, Empty> address { Empty {} };
entry.description().visit(
[&](FunctionIndex const& index) {
if (module_instance.functions().size() > index.value())
address = FunctionAddress { module_instance.functions()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.functions().size());
},
[&](TableIndex const& index) {
if (module_instance.tables().size() > index.value())
address = TableAddress { module_instance.tables()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.tables().size());
},
[&](MemoryIndex const& index) {
if (module_instance.memories().size() > index.value())
address = MemoryAddress { module_instance.memories()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.memories().size());
},
[&](GlobalIndex const& index) {
if (module_instance.globals().size() > index.value())
address = GlobalAddress { module_instance.globals()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.globals().size());
});
if (address.has<Empty>()) {
result = InstantiationError { "An export could not be resolved" };
continue;
}
module_instance.exports().append(ExportInstance {
entry.name(),
move(address).downcast<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress>(),
});
}
});
return result;
}
Optional<InstantiationError> AbstractMachine::allocate_all_final_phase(Module const& module, ModuleInstance& module_instance, Vector<Vector<Reference>>& elements)
{
module.for_each_section_of_type<ElementSection>([&](ElementSection const& section) {
size_t index = 0;
for (auto& segment : section.segments()) {
auto address = m_store.allocate(segment.type, move(elements[index]));
VERIFY(address.has_value());
module_instance.elements().append(*address);
index++;
}
});
return {};
}
Result AbstractMachine::invoke(FunctionAddress address, Vector<Value> arguments)
{
BytecodeInterpreter interpreter;
return invoke(interpreter, address, move(arguments));
}
Result AbstractMachine::invoke(Interpreter& interpreter, FunctionAddress address, Vector<Value> arguments)
{
Configuration configuration { m_store };
return configuration.call(interpreter, address, move(arguments));
}
void Linker::link(ModuleInstance const& instance)
{
populate();
if (m_unresolved_imports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto it = instance.exports().find_if([&](auto& export_) { return export_.name() == import_.name; });
if (!it.is_end()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, it->value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
void Linker::link(HashMap<Linker::Name, ExternValue> const& exports)
{
populate();
if (m_unresolved_imports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto export_ = exports.get(import_);
if (export_.has_value()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, export_.value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
AK::Result<Vector<ExternValue>, LinkError> Linker::finish()
{
populate();
if (!m_unresolved_imports.is_empty()) {
if (!m_error.has_value())
m_error = LinkError {};
for (auto& entry : m_unresolved_imports)
m_error->missing_imports.append(entry.name);
return *m_error;
}
if (m_error.has_value())
return *m_error;
// Result must be in the same order as the module imports
Vector<ExternValue> exports;
exports.ensure_capacity(m_ordered_imports.size());
for (auto& import_ : m_ordered_imports)
exports.unchecked_append(*m_resolved_imports.get(import_));
return exports;
}
void Linker::populate()
{
if (!m_ordered_imports.is_empty())
return;
// There better be at most one import section!
bool already_seen_an_import_section = false;
m_module.for_each_section_of_type<ImportSection>([&](ImportSection const& section) {
if (already_seen_an_import_section) {
if (!m_error.has_value())
m_error = LinkError {};
m_error->other_errors.append(LinkError::InvalidImportedModule);
return;
}
already_seen_an_import_section = true;
for (auto& import_ : section.imports()) {
m_ordered_imports.append({ import_.module(), import_.name(), import_.description() });
m_unresolved_imports.set(m_ordered_imports.last());
}
});
}
}
|