1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
/*
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/NonnullOwnPtr.h>
#include <AK/OwnPtr.h>
#include <LibVideo/Color/ColorConverter.h>
#include "VideoFrame.h"
namespace Video {
ErrorOr<NonnullOwnPtr<SubsampledYUVFrame>> SubsampledYUVFrame::try_create(
Gfx::IntSize size,
u8 bit_depth, CodingIndependentCodePoints cicp,
bool subsampling_horizontal, bool subsampling_vertical,
Span<u16> plane_y, Span<u16> plane_u, Span<u16> plane_v)
{
auto plane_y_array = TRY(FixedArray<u16>::try_create(plane_y));
auto plane_u_array = TRY(FixedArray<u16>::try_create(plane_u));
auto plane_v_array = TRY(FixedArray<u16>::try_create(plane_v));
return adopt_nonnull_own_or_enomem(new (nothrow) SubsampledYUVFrame(size, bit_depth, cicp, subsampling_horizontal, subsampling_vertical, plane_y_array, plane_u_array, plane_v_array));
}
DecoderErrorOr<void> SubsampledYUVFrame::output_to_bitmap(Gfx::Bitmap& bitmap)
{
size_t width = this->width();
size_t height = this->height();
auto u_sample_row = DECODER_TRY_ALLOC(FixedArray<u16>::try_create(width));
auto v_sample_row = DECODER_TRY_ALLOC(FixedArray<u16>::try_create(width));
size_t uv_width = width >> m_subsampling_horizontal;
auto converter = TRY(ColorConverter::create(bit_depth(), cicp()));
for (size_t row = 0; row < height; row++) {
auto uv_row = row >> m_subsampling_vertical;
// Linearly interpolate the UV samples vertically first.
// This will write all UV samples that are located on the Y sample as well,
// so we only need to interpolate horizontally between UV samples in the next
// step.
if ((row & m_subsampling_vertical) == 0 || row == height - 1) {
for (size_t uv_column = 0; uv_column < uv_width; uv_column++) {
size_t column = uv_column << m_subsampling_horizontal;
size_t index = uv_row * uv_width + uv_column;
u_sample_row[column] = m_plane_u[index];
v_sample_row[column] = m_plane_v[index];
}
} else {
for (size_t uv_column = 0; uv_column < uv_width; uv_column++) {
size_t column = uv_column << m_subsampling_horizontal;
size_t index = (uv_row + 1) * uv_width + uv_column;
u_sample_row[column] = (u_sample_row[column] + m_plane_u[index]) >> 1;
v_sample_row[column] = (v_sample_row[column] + m_plane_v[index]) >> 1;
}
}
// Fill in the last pixel of the row which may not be applied by the above
// loops if the last pixel in each row is on an uneven index.
if ((width & 1) == 0) {
u_sample_row[width - 1] = u_sample_row[width - 2];
v_sample_row[width - 1] = v_sample_row[width - 2];
}
// Interpolate the samples horizontally.
if (m_subsampling_horizontal) {
for (size_t column = 1; column < width - 1; column += 2) {
u_sample_row[column] = (u_sample_row[column - 1] + u_sample_row[column + 1]) >> 1;
v_sample_row[column] = (v_sample_row[column - 1] + v_sample_row[column + 1]) >> 1;
}
}
for (size_t column = 0; column < width; column++) {
auto y_sample = m_plane_y[row * width + column];
auto u_sample = u_sample_row[column];
auto v_sample = v_sample_row[column];
bitmap.set_pixel(Gfx::IntPoint(column, row), converter.convert_yuv_to_full_range_rgb(y_sample, u_sample, v_sample));
/*auto r_float = clamp(y_sample + (v_sample - 128) * 219.0f / 224.0f * 1.5748f, 0, 255);
auto g_float = clamp(y_sample + (u_sample - 128) * 219.0f / 224.0f * -0.0722f * 1.8556f / 0.7152f + (v_sample - 128) * 219.0f / 224.0f * -0.2126f * 1.5748f / 0.7152f, 0, 255);
auto b_float = clamp(y_sample + (u_sample - 128) * 219.0f / 224.0f * 1.8556f, 0, 255);
auto r = static_cast<u8>(r_float);
auto g = static_cast<u8>(g_float);
auto b = static_cast<u8>(b_float);
bitmap.set_pixel(Gfx::IntPoint(column, row), Color(r, g, b));*/
}
}
return {};
}
}
|