1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
|
/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/MemoryStream.h>
#include <LibGfx/Point.h>
#include <LibGfx/Size.h>
#include "Context.h"
#include "Decoder.h"
#include "Parser.h"
#include "Utilities.h"
#if defined(AK_COMPILER_GCC)
# pragma GCC optimize("O3")
#endif
namespace Video::VP9 {
#define TRY_READ(expression) DECODER_TRY(DecoderErrorCategory::Corrupted, expression)
Parser::Parser(Decoder& decoder)
: m_decoder(decoder)
{
}
Parser::~Parser()
{
}
Vector<size_t> Parser::parse_superframe_sizes(ReadonlyBytes frame_data)
{
if (frame_data.size() < 1)
return {};
// The decoder determines the presence of a superframe by:
// 1. parsing the final byte of the chunk and checking that the superframe_marker equals 0b110,
// If the checks in steps 1 and 3 both pass, then the chunk is determined to contain a superframe and each
// frame in the superframe is passed to the decoding process in turn.
// Otherwise, the chunk is determined to not contain a superframe, and the whole chunk is passed to the
// decoding process.
// NOTE: Reading from span data will be quicker than spinning up a BitStream.
u8 superframe_byte = frame_data[frame_data.size() - 1];
// NOTE: We have to read out of the byte from the little end first, hence the padding bits in the masks below.
u8 superframe_marker = superframe_byte & 0b1110'0000;
if (superframe_marker == 0b1100'0000) {
u8 bytes_per_framesize = ((superframe_byte >> 3) & 0b11) + 1;
u8 frames_in_superframe = (superframe_byte & 0b111) + 1;
// 2. setting the total size of the superframe_index SzIndex equal to 2 + NumFrames * SzBytes,
size_t index_size = 2 + bytes_per_framesize * frames_in_superframe;
if (index_size > frame_data.size())
return {};
auto superframe_header_data = frame_data.data() + frame_data.size() - index_size;
u8 start_superframe_byte = *(superframe_header_data++);
// 3. checking that the first byte of the superframe_index matches the final byte.
if (superframe_byte != start_superframe_byte)
return {};
Vector<size_t> result;
for (u8 i = 0; i < frames_in_superframe; i++) {
size_t frame_size = 0;
for (u8 j = 0; j < bytes_per_framesize; j++)
frame_size |= (static_cast<size_t>(*(superframe_header_data++)) << (j * 8));
result.append(frame_size);
}
return result;
}
return {};
}
/* (6.1) */
DecoderErrorOr<FrameContext> Parser::parse_frame(ReadonlyBytes frame_data)
{
if (!m_probability_tables)
m_probability_tables = DECODER_TRY_ALLOC(try_make<ProbabilityTables>());
m_syntax_element_counter = make<SyntaxElementCounter>();
// NOTE: m_reusable_frame_block_contexts does not need to retain any data between frame decodes.
// This is only stored so that we don't need to allocate a frame's block contexts on each
// call to this function, since it will rarely change sizes.
FrameContext frame_context { frame_data, m_reusable_frame_block_contexts };
TRY(uncompressed_header(frame_context));
// FIXME: This should not be an error. Spec says that we consume padding bits until the end of the sample.
if (frame_context.header_size_in_bytes == 0)
return DecoderError::corrupted("Frame header is zero-sized"sv);
m_probability_tables->load_probs(frame_context.probability_context_index);
m_probability_tables->load_probs2(frame_context.probability_context_index);
m_syntax_element_counter->clear_counts();
TRY(compressed_header(frame_context));
TRY(m_decoder.allocate_buffers(frame_context));
TRY(decode_tiles(frame_context));
TRY(refresh_probs(frame_context));
m_previous_frame_type = frame_context.type;
m_previous_frame_size = frame_context.size();
m_previous_show_frame = frame_context.shows_a_frame();
m_previous_color_config = frame_context.color_config;
m_previous_loop_filter_ref_deltas = frame_context.loop_filter_reference_deltas;
m_previous_loop_filter_mode_deltas = frame_context.loop_filter_mode_deltas;
if (frame_context.segmentation_enabled) {
m_previous_should_use_absolute_segment_base_quantizer = frame_context.should_use_absolute_segment_base_quantizer;
m_previous_segmentation_features = frame_context.segmentation_features;
}
return frame_context;
}
DecoderErrorOr<void> Parser::refresh_probs(FrameContext const& frame_context)
{
if (!frame_context.error_resilient_mode && !frame_context.parallel_decoding_mode) {
m_probability_tables->load_probs(frame_context.probability_context_index);
TRY(m_decoder.adapt_coef_probs(frame_context.is_inter_predicted()));
if (frame_context.is_inter_predicted()) {
m_probability_tables->load_probs2(frame_context.probability_context_index);
TRY(m_decoder.adapt_non_coef_probs(frame_context));
}
}
if (frame_context.should_replace_probability_context)
m_probability_tables->save_probs(frame_context.probability_context_index);
return {};
}
DecoderErrorOr<VideoFullRangeFlag> Parser::read_video_full_range_flag(BigEndianInputBitStream& bit_stream)
{
if (TRY_READ(bit_stream.read_bit()))
return VideoFullRangeFlag::Full;
return VideoFullRangeFlag::Studio;
}
/* (6.2) */
DecoderErrorOr<void> Parser::uncompressed_header(FrameContext& frame_context)
{
frame_context.color_config = m_previous_color_config;
auto frame_marker = TRY_READ(frame_context.bit_stream.read_bits(2));
if (frame_marker != 2)
return DecoderError::corrupted("uncompressed_header: Frame marker must be 2"sv);
auto profile_low_bit = TRY_READ(frame_context.bit_stream.read_bit());
auto profile_high_bit = TRY_READ(frame_context.bit_stream.read_bit());
frame_context.profile = (profile_high_bit << 1u) + profile_low_bit;
if (frame_context.profile == 3 && TRY_READ(frame_context.bit_stream.read_bit()))
return DecoderError::corrupted("uncompressed_header: Profile 3 reserved bit was non-zero"sv);
if (TRY_READ(frame_context.bit_stream.read_bit())) {
frame_context.set_existing_frame_to_show(TRY_READ(frame_context.bit_stream.read_bits(3)));
return {};
}
bool is_keyframe = !TRY_READ(frame_context.bit_stream.read_bit());
if (!TRY_READ(frame_context.bit_stream.read_bit()))
frame_context.set_frame_hidden();
frame_context.error_resilient_mode = TRY_READ(frame_context.bit_stream.read_bit());
FrameType type;
Gfx::Size<u32> frame_size;
Gfx::Size<u32> render_size;
u8 reference_frames_to_update_flags = 0xFF; // Save frame to all reference indices by default.
enum class ResetProbabilities : u8 {
No = 0,
// 1 also means No here, but we don't need to do anything with the No case.
OnlyCurrent = 2,
All = 3,
};
ResetProbabilities reset_frame_context = ResetProbabilities::All;
if (is_keyframe) {
type = FrameType::KeyFrame;
TRY(frame_sync_code(frame_context.bit_stream));
frame_context.color_config = TRY(parse_color_config(frame_context.bit_stream, frame_context.profile));
frame_size = TRY(parse_frame_size(frame_context.bit_stream));
render_size = TRY(parse_render_size(frame_context.bit_stream, frame_size));
} else {
if (!frame_context.shows_a_frame() && TRY_READ(frame_context.bit_stream.read_bit())) {
type = FrameType::IntraOnlyFrame;
} else {
type = FrameType::InterFrame;
reset_frame_context = ResetProbabilities::No;
}
if (!frame_context.error_resilient_mode)
reset_frame_context = static_cast<ResetProbabilities>(TRY_READ(frame_context.bit_stream.read_bits(2)));
if (type == FrameType::IntraOnlyFrame) {
TRY(frame_sync_code(frame_context.bit_stream));
if (frame_context.profile == 0) {
frame_context.color_config = ColorConfig();
} else {
frame_context.color_config = TRY(parse_color_config(frame_context.bit_stream, frame_context.profile));
}
reference_frames_to_update_flags = TRY_READ(frame_context.bit_stream.read_bits(8));
frame_size = TRY(parse_frame_size(frame_context.bit_stream));
render_size = TRY(parse_render_size(frame_context.bit_stream, frame_size));
} else {
reference_frames_to_update_flags = TRY_READ(frame_context.bit_stream.read_bits(NUM_REF_FRAMES));
for (auto i = 0; i < REFS_PER_FRAME; i++) {
frame_context.reference_frame_indices[i] = TRY_READ(frame_context.bit_stream.read_bits(LOG2_OF_NUM_REF_FRAMES));
frame_context.reference_frame_sign_biases[ReferenceFrameType::LastFrame + i] = TRY_READ(frame_context.bit_stream.read_bit());
}
frame_size = TRY(parse_frame_size_with_refs(frame_context.bit_stream, frame_context.reference_frame_indices));
render_size = TRY(parse_render_size(frame_context.bit_stream, frame_size));
frame_context.high_precision_motion_vectors_allowed = TRY_READ(frame_context.bit_stream.read_bit());
frame_context.interpolation_filter = TRY(read_interpolation_filter(frame_context.bit_stream));
for (auto i = 0; i < REFS_PER_FRAME; i++) {
TRY(m_decoder.prepare_referenced_frame(frame_size, frame_context.reference_frame_indices[i]));
}
}
}
bool should_replace_probability_context = false;
bool parallel_decoding_mode = true;
if (!frame_context.error_resilient_mode) {
should_replace_probability_context = TRY_READ(frame_context.bit_stream.read_bit());
parallel_decoding_mode = TRY_READ(frame_context.bit_stream.read_bit());
}
u8 probability_context_index = TRY_READ(frame_context.bit_stream.read_bits(2));
switch (reset_frame_context) {
case ResetProbabilities::All:
setup_past_independence();
for (auto i = 0; i < 4; i++) {
m_probability_tables->save_probs(i);
}
probability_context_index = 0;
break;
case ResetProbabilities::OnlyCurrent:
setup_past_independence();
m_probability_tables->save_probs(probability_context_index);
probability_context_index = 0;
break;
default:
break;
}
frame_context.type = type;
DECODER_TRY_ALLOC(frame_context.set_size(frame_size));
frame_context.render_size = render_size;
TRY(compute_image_size(frame_context));
frame_context.reference_frames_to_update_flags = reference_frames_to_update_flags;
frame_context.parallel_decoding_mode = parallel_decoding_mode;
frame_context.should_replace_probability_context = should_replace_probability_context;
frame_context.probability_context_index = probability_context_index;
TRY(loop_filter_params(frame_context));
TRY(quantization_params(frame_context));
TRY(segmentation_params(frame_context));
TRY(parse_tile_counts(frame_context));
frame_context.header_size_in_bytes = TRY_READ(frame_context.bit_stream.read_bits(16));
frame_context.bit_stream.align_to_byte_boundary();
return {};
}
DecoderErrorOr<void> Parser::frame_sync_code(BigEndianInputBitStream& bit_stream)
{
if (TRY_READ(bit_stream.read_bits(24)) != 0x498342) {
return DecoderError::corrupted("frame sync code was not 0x498342."sv);
}
return {};
}
DecoderErrorOr<ColorConfig> Parser::parse_color_config(BigEndianInputBitStream& bit_stream, u8 profile)
{
// (6.2.2) color_config( )
u8 bit_depth;
if (profile >= 2) {
bit_depth = TRY_READ(bit_stream.read_bit()) ? 12 : 10;
} else {
bit_depth = 8;
}
auto color_space = static_cast<ColorSpace>(TRY_READ(bit_stream.read_bits(3)));
VERIFY(color_space <= ColorSpace::RGB);
VideoFullRangeFlag video_full_range_flag;
bool subsampling_x, subsampling_y;
if (color_space != ColorSpace::RGB) {
video_full_range_flag = TRY(read_video_full_range_flag(bit_stream));
if (profile == 1 || profile == 3) {
subsampling_x = TRY_READ(bit_stream.read_bit());
subsampling_y = TRY_READ(bit_stream.read_bit());
if (TRY_READ(bit_stream.read_bit()))
return DecoderError::corrupted("color_config: Subsampling reserved zero was set"sv);
} else {
subsampling_x = true;
subsampling_y = true;
}
} else {
video_full_range_flag = VideoFullRangeFlag::Full;
if (profile == 1 || profile == 3) {
subsampling_x = false;
subsampling_y = false;
if (TRY_READ(bit_stream.read_bit()))
return DecoderError::corrupted("color_config: RGB reserved zero was set"sv);
} else {
// FIXME: Spec does not specify the subsampling value here. Is this an error or should we set a default?
VERIFY_NOT_REACHED();
}
}
return ColorConfig { bit_depth, color_space, video_full_range_flag, subsampling_x, subsampling_y };
}
DecoderErrorOr<Gfx::Size<u32>> Parser::parse_frame_size(BigEndianInputBitStream& bit_stream)
{
return Gfx::Size<u32> { TRY_READ(bit_stream.read_bits(16)) + 1, TRY_READ(bit_stream.read_bits(16)) + 1 };
}
DecoderErrorOr<Gfx::Size<u32>> Parser::parse_render_size(BigEndianInputBitStream& bit_stream, Gfx::Size<u32> frame_size)
{
// FIXME: This function should save this bit as a value in the FrameContext. The bit can be
// used in files where the pixel aspect ratio changes between samples in the video.
// If the bit is set, the pixel aspect ratio should be recalculated, whereas if only
// the frame size has changed and the render size is unadjusted, then the pixel aspect
// ratio should be retained and the new render size determined based on that.
// See the Firefox source code here:
// https://searchfox.org/mozilla-central/source/dom/media/platforms/wrappers/MediaChangeMonitor.cpp#268-276
if (!TRY_READ(bit_stream.read_bit()))
return frame_size;
return Gfx::Size<u32> { TRY_READ(bit_stream.read_bits(16)) + 1, TRY_READ(bit_stream.read_bits(16)) + 1 };
}
DecoderErrorOr<Gfx::Size<u32>> Parser::parse_frame_size_with_refs(BigEndianInputBitStream& bit_stream, Array<u8, 3> const& reference_indices)
{
Optional<Gfx::Size<u32>> size;
for (auto frame_index : reference_indices) {
if (TRY_READ(bit_stream.read_bit())) {
if (!m_reference_frames[frame_index].is_valid())
return DecoderError::corrupted("Frame size referenced a frame that does not exist"sv);
size.emplace(m_reference_frames[frame_index].size);
break;
}
}
if (size.has_value())
return size.value();
return TRY(parse_frame_size(bit_stream));
}
DecoderErrorOr<void> Parser::compute_image_size(FrameContext& frame_context)
{
// 7.2.6 Compute image size semantics
// When compute_image_size is invoked, the following ordered steps occur:
// 1. If this is the first time compute_image_size is invoked, or if either FrameWidth or FrameHeight have
// changed in value compared to the previous time this function was invoked, then the segmentation map is
// cleared to all zeros by setting SegmentId[ row ][ col ] equal to 0 for row = 0..MiRows-1 and col =
// 0..MiCols-1.
// FIXME: What does this mean? SegmentIds is scoped to one frame, so it will not contain values here. It's
// also suspicious that spec refers to this as SegmentId rather than SegmentIds (plural). Is this
// supposed to refer to PrevSegmentIds?
bool first_invoke = m_is_first_compute_image_size_invoke;
m_is_first_compute_image_size_invoke = false;
bool same_size = m_previous_frame_size == frame_context.size();
// 2. The variable UsePrevFrameMvs is set equal to 1 if all of the following conditions are true:
// a. This is not the first time compute_image_size is invoked.
// b. Both FrameWidth and FrameHeight have the same value compared to the previous time this function
// was invoked.
// c. show_frame was equal to 1 the previous time this function was invoked.
// d. error_resilient_mode is equal to 0.
// e. FrameIsIntra is equal to 0.
// Otherwise, UsePrevFrameMvs is set equal to 0.
frame_context.use_previous_frame_motion_vectors = !first_invoke && same_size && m_previous_show_frame && !frame_context.error_resilient_mode && frame_context.is_inter_predicted();
return {};
}
DecoderErrorOr<InterpolationFilter> Parser::read_interpolation_filter(BigEndianInputBitStream& bit_stream)
{
if (TRY_READ(bit_stream.read_bit())) {
return InterpolationFilter::Switchable;
}
return literal_to_type[TRY_READ(bit_stream.read_bits(2))];
}
template<Signed T = i8>
static ErrorOr<T> read_signed(BigEndianInputBitStream& bit_stream, u8 bits)
{
auto value_unsigned = static_cast<T>(TRY(bit_stream.read_bits(bits)));
if (TRY(bit_stream.read_bit()))
return -value_unsigned;
return value_unsigned;
}
DecoderErrorOr<void> Parser::loop_filter_params(FrameContext& frame_context)
{
// FIXME: These should be moved to their own struct to return here.
frame_context.loop_filter_level = TRY_READ(frame_context.bit_stream.read_bits(6));
frame_context.loop_filter_sharpness = TRY_READ(frame_context.bit_stream.read_bits(3));
frame_context.loop_filter_delta_enabled = TRY_READ(frame_context.bit_stream.read_bit());
auto reference_deltas = m_previous_loop_filter_ref_deltas;
auto mode_deltas = m_previous_loop_filter_mode_deltas;
if (frame_context.loop_filter_delta_enabled && TRY_READ(frame_context.bit_stream.read_bit())) {
for (auto& loop_filter_ref_delta : reference_deltas) {
if (TRY_READ(frame_context.bit_stream.read_bit()))
loop_filter_ref_delta = TRY_READ(read_signed(frame_context.bit_stream, 6));
}
for (auto& loop_filter_mode_delta : mode_deltas) {
if (TRY_READ(frame_context.bit_stream.read_bit()))
loop_filter_mode_delta = TRY_READ(read_signed(frame_context.bit_stream, 6));
}
}
frame_context.loop_filter_reference_deltas = reference_deltas;
frame_context.loop_filter_mode_deltas = mode_deltas;
return {};
}
DecoderErrorOr<void> Parser::quantization_params(FrameContext& frame_context)
{
frame_context.base_quantizer_index = TRY_READ(frame_context.bit_stream.read_bits(8));
frame_context.y_dc_quantizer_index_delta = TRY(read_delta_q(frame_context.bit_stream));
frame_context.uv_dc_quantizer_index_delta = TRY(read_delta_q(frame_context.bit_stream));
frame_context.uv_ac_quantizer_index_delta = TRY(read_delta_q(frame_context.bit_stream));
return {};
}
DecoderErrorOr<i8> Parser::read_delta_q(BigEndianInputBitStream& bit_stream)
{
if (TRY_READ(bit_stream.read_bit()))
return TRY_READ(read_signed(bit_stream, 4));
return 0;
}
DecoderErrorOr<void> Parser::segmentation_params(FrameContext& frame_context)
{
frame_context.segmentation_enabled = TRY_READ(frame_context.bit_stream.read_bit());
if (!frame_context.segmentation_enabled)
return {};
frame_context.should_use_absolute_segment_base_quantizer = m_previous_should_use_absolute_segment_base_quantizer;
frame_context.segmentation_features = m_previous_segmentation_features;
if (TRY_READ(frame_context.bit_stream.read_bit())) {
frame_context.use_full_segment_id_tree = true;
for (auto& segmentation_tree_prob : frame_context.full_segment_id_tree_probabilities)
segmentation_tree_prob = TRY(read_prob(frame_context.bit_stream));
if (TRY_READ(frame_context.bit_stream.read_bit())) {
frame_context.use_predicted_segment_id_tree = true;
for (auto& segmentation_pred_prob : frame_context.predicted_segment_id_tree_probabilities)
segmentation_pred_prob = TRY(read_prob(frame_context.bit_stream));
}
}
auto segmentation_update_data = (TRY_READ(frame_context.bit_stream.read_bit()));
if (!segmentation_update_data)
return {};
frame_context.should_use_absolute_segment_base_quantizer = TRY_READ(frame_context.bit_stream.read_bit());
for (auto i = 0; i < MAX_SEGMENTS; i++) {
for (auto j = 0; j < SEG_LVL_MAX; j++) {
auto& feature = frame_context.segmentation_features[i][j];
feature.enabled = TRY_READ(frame_context.bit_stream.read_bit());
if (feature.enabled) {
auto bits_to_read = segmentation_feature_bits[j];
feature.value = TRY_READ(frame_context.bit_stream.read_bits(bits_to_read));
if (segmentation_feature_signed[j]) {
if (TRY_READ(frame_context.bit_stream.read_bit()))
feature.value = -feature.value;
}
}
}
}
return {};
}
DecoderErrorOr<u8> Parser::read_prob(BigEndianInputBitStream& bit_stream)
{
if (TRY_READ(bit_stream.read_bit()))
return TRY_READ(bit_stream.read_bits(8));
return 255;
}
static u16 calc_min_log2_of_tile_columns(u32 superblock_columns)
{
auto min_log_2 = 0u;
while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < superblock_columns)
min_log_2++;
return min_log_2;
}
static u16 calc_max_log2_tile_cols(u32 superblock_columns)
{
u16 max_log_2 = 1;
while ((superblock_columns >> max_log_2) >= MIN_TILE_WIDTH_B64)
max_log_2++;
return max_log_2 - 1;
}
DecoderErrorOr<void> Parser::parse_tile_counts(FrameContext& frame_context)
{
auto superblock_columns = frame_context.superblock_columns();
auto log2_of_tile_columns = calc_min_log2_of_tile_columns(superblock_columns);
auto log2_of_tile_columns_maximum = calc_max_log2_tile_cols(superblock_columns);
while (log2_of_tile_columns < log2_of_tile_columns_maximum) {
if (TRY_READ(frame_context.bit_stream.read_bit()))
log2_of_tile_columns++;
else
break;
}
u16 log2_of_tile_rows = TRY_READ(frame_context.bit_stream.read_bit());
if (log2_of_tile_rows > 0) {
log2_of_tile_rows += TRY_READ(frame_context.bit_stream.read_bit());
}
frame_context.log2_of_tile_counts = Gfx::Size<u16>(log2_of_tile_columns, log2_of_tile_rows);
return {};
}
void Parser::setup_past_independence()
{
m_previous_block_contexts.reset();
m_previous_loop_filter_ref_deltas[ReferenceFrameType::None] = 1;
m_previous_loop_filter_ref_deltas[ReferenceFrameType::LastFrame] = 0;
m_previous_loop_filter_ref_deltas[ReferenceFrameType::GoldenFrame] = -1;
m_previous_loop_filter_ref_deltas[ReferenceFrameType::AltRefFrame] = -1;
m_previous_loop_filter_mode_deltas.fill(0);
m_previous_should_use_absolute_segment_base_quantizer = false;
for (auto& segment_levels : m_previous_segmentation_features)
segment_levels.fill({ false, 0 });
m_probability_tables->reset_probs();
}
DecoderErrorOr<void> Parser::compressed_header(FrameContext& frame_context)
{
auto decoder = TRY_READ(BooleanDecoder::initialize(MaybeOwned(frame_context.bit_stream), frame_context.header_size_in_bytes));
frame_context.transform_mode = TRY(read_tx_mode(decoder, frame_context));
if (frame_context.transform_mode == TransformMode::Select)
TRY(tx_mode_probs(decoder));
TRY(read_coef_probs(decoder, frame_context.transform_mode));
TRY(read_skip_prob(decoder));
if (frame_context.is_inter_predicted()) {
TRY(read_inter_mode_probs(decoder));
if (frame_context.interpolation_filter == Switchable)
TRY(read_interp_filter_probs(decoder));
TRY(read_is_inter_probs(decoder));
TRY(frame_reference_mode(frame_context, decoder));
TRY(frame_reference_mode_probs(decoder, frame_context));
TRY(read_y_mode_probs(decoder));
TRY(read_partition_probs(decoder));
TRY(mv_probs(decoder, frame_context));
}
TRY_READ(decoder.finish_decode());
return {};
}
DecoderErrorOr<TransformMode> Parser::read_tx_mode(BooleanDecoder& decoder, FrameContext const& frame_context)
{
if (frame_context.is_lossless()) {
return TransformMode::Only_4x4;
}
auto tx_mode = TRY_READ(decoder.read_literal(2));
if (tx_mode == to_underlying(TransformMode::Allow_32x32))
tx_mode += TRY_READ(decoder.read_literal(1));
return static_cast<TransformMode>(tx_mode);
}
DecoderErrorOr<void> Parser::tx_mode_probs(BooleanDecoder& decoder)
{
auto& tx_probs = m_probability_tables->tx_probs();
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 3; j++)
tx_probs[Transform_8x8][i][j] = TRY(diff_update_prob(decoder, tx_probs[Transform_8x8][i][j]));
}
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 2; j++)
tx_probs[Transform_16x16][i][j] = TRY(diff_update_prob(decoder, tx_probs[Transform_16x16][i][j]));
}
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 1; j++)
tx_probs[Transform_32x32][i][j] = TRY(diff_update_prob(decoder, tx_probs[Transform_32x32][i][j]));
}
return {};
}
DecoderErrorOr<u8> Parser::diff_update_prob(BooleanDecoder& decoder, u8 prob)
{
auto update_prob = TRY_READ(decoder.read_bool(252));
if (update_prob) {
auto delta_prob = TRY(decode_term_subexp(decoder));
prob = inv_remap_prob(delta_prob, prob);
}
return prob;
}
DecoderErrorOr<u8> Parser::decode_term_subexp(BooleanDecoder& decoder)
{
if (TRY_READ(decoder.read_literal(1)) == 0)
return TRY_READ(decoder.read_literal(4));
if (TRY_READ(decoder.read_literal(1)) == 0)
return TRY_READ(decoder.read_literal(4)) + 16;
if (TRY_READ(decoder.read_literal(1)) == 0)
return TRY_READ(decoder.read_literal(5)) + 32;
auto v = TRY_READ(decoder.read_literal(7));
if (v < 65)
return v + 64;
return (v << 1u) - 1 + TRY_READ(decoder.read_literal(1));
}
u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob)
{
u8 m = prob - 1;
auto v = inv_map_table[delta_prob];
if ((m << 1u) <= 255)
return 1 + inv_recenter_nonneg(v, m);
return 255 - inv_recenter_nonneg(v, 254 - m);
}
u8 Parser::inv_recenter_nonneg(u8 v, u8 m)
{
if (v > 2 * m)
return v;
if (v & 1u)
return m - ((v + 1u) >> 1u);
return m + (v >> 1u);
}
DecoderErrorOr<void> Parser::read_coef_probs(BooleanDecoder& decoder, TransformMode transform_mode)
{
auto max_tx_size = tx_mode_to_biggest_tx_size[to_underlying(transform_mode)];
for (u8 transform_size = 0; transform_size <= max_tx_size; transform_size++) {
auto update_probs = TRY_READ(decoder.read_literal(1));
if (update_probs == 1) {
for (auto i = 0; i < 2; i++) {
for (auto j = 0; j < 2; j++) {
for (auto k = 0; k < 6; k++) {
auto max_l = (k == 0) ? 3 : 6;
for (auto l = 0; l < max_l; l++) {
for (auto m = 0; m < 3; m++) {
auto& prob = m_probability_tables->coef_probs()[transform_size][i][j][k][l][m];
prob = TRY(diff_update_prob(decoder, prob));
}
}
}
}
}
}
}
return {};
}
DecoderErrorOr<void> Parser::read_skip_prob(BooleanDecoder& decoder)
{
for (auto i = 0; i < SKIP_CONTEXTS; i++)
m_probability_tables->skip_prob()[i] = TRY(diff_update_prob(decoder, m_probability_tables->skip_prob()[i]));
return {};
}
DecoderErrorOr<void> Parser::read_inter_mode_probs(BooleanDecoder& decoder)
{
for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (auto j = 0; j < INTER_MODES - 1; j++)
m_probability_tables->inter_mode_probs()[i][j] = TRY(diff_update_prob(decoder, m_probability_tables->inter_mode_probs()[i][j]));
}
return {};
}
DecoderErrorOr<void> Parser::read_interp_filter_probs(BooleanDecoder& decoder)
{
for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) {
for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++)
m_probability_tables->interp_filter_probs()[i][j] = TRY(diff_update_prob(decoder, m_probability_tables->interp_filter_probs()[i][j]));
}
return {};
}
DecoderErrorOr<void> Parser::read_is_inter_probs(BooleanDecoder& decoder)
{
for (auto i = 0; i < IS_INTER_CONTEXTS; i++)
m_probability_tables->is_inter_prob()[i] = TRY(diff_update_prob(decoder, m_probability_tables->is_inter_prob()[i]));
return {};
}
static void setup_compound_reference_mode(FrameContext& frame_context)
{
ReferenceFrameType fixed_reference;
ReferenceFramePair variable_references;
if (frame_context.reference_frame_sign_biases[ReferenceFrameType::LastFrame] == frame_context.reference_frame_sign_biases[ReferenceFrameType::GoldenFrame]) {
fixed_reference = ReferenceFrameType::AltRefFrame;
variable_references = { ReferenceFrameType::LastFrame, ReferenceFrameType::GoldenFrame };
} else if (frame_context.reference_frame_sign_biases[ReferenceFrameType::LastFrame] == frame_context.reference_frame_sign_biases[ReferenceFrameType::AltRefFrame]) {
fixed_reference = ReferenceFrameType::GoldenFrame;
variable_references = { ReferenceFrameType::LastFrame, ReferenceFrameType::AltRefFrame };
} else {
fixed_reference = ReferenceFrameType::LastFrame;
variable_references = { ReferenceFrameType::GoldenFrame, ReferenceFrameType::AltRefFrame };
}
frame_context.fixed_reference_type = fixed_reference;
frame_context.variable_reference_types = variable_references;
}
DecoderErrorOr<void> Parser::frame_reference_mode(FrameContext& frame_context, BooleanDecoder& decoder)
{
auto compound_reference_allowed = false;
for (size_t i = 2; i <= REFS_PER_FRAME; i++) {
if (frame_context.reference_frame_sign_biases[i] != frame_context.reference_frame_sign_biases[1])
compound_reference_allowed = true;
}
ReferenceMode reference_mode;
if (compound_reference_allowed) {
auto non_single_reference = TRY_READ(decoder.read_literal(1));
if (non_single_reference == 0) {
reference_mode = SingleReference;
} else {
auto reference_select = TRY_READ(decoder.read_literal(1));
if (reference_select == 0)
reference_mode = CompoundReference;
else
reference_mode = ReferenceModeSelect;
}
} else {
reference_mode = SingleReference;
}
frame_context.reference_mode = reference_mode;
if (reference_mode != SingleReference)
setup_compound_reference_mode(frame_context);
return {};
}
DecoderErrorOr<void> Parser::frame_reference_mode_probs(BooleanDecoder& decoder, FrameContext const& frame_context)
{
if (frame_context.reference_mode == ReferenceModeSelect) {
for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) {
auto& comp_mode_prob = m_probability_tables->comp_mode_prob();
comp_mode_prob[i] = TRY(diff_update_prob(decoder, comp_mode_prob[i]));
}
}
if (frame_context.reference_mode != CompoundReference) {
for (auto i = 0; i < REF_CONTEXTS; i++) {
auto& single_ref_prob = m_probability_tables->single_ref_prob();
single_ref_prob[i][0] = TRY(diff_update_prob(decoder, single_ref_prob[i][0]));
single_ref_prob[i][1] = TRY(diff_update_prob(decoder, single_ref_prob[i][1]));
}
}
if (frame_context.reference_mode != SingleReference) {
for (auto i = 0; i < REF_CONTEXTS; i++) {
auto& comp_ref_prob = m_probability_tables->comp_ref_prob();
comp_ref_prob[i] = TRY(diff_update_prob(decoder, comp_ref_prob[i]));
}
}
return {};
}
DecoderErrorOr<void> Parser::read_y_mode_probs(BooleanDecoder& decoder)
{
for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) {
for (auto j = 0; j < INTRA_MODES - 1; j++) {
auto& y_mode_probs = m_probability_tables->y_mode_probs();
y_mode_probs[i][j] = TRY(diff_update_prob(decoder, y_mode_probs[i][j]));
}
}
return {};
}
DecoderErrorOr<void> Parser::read_partition_probs(BooleanDecoder& decoder)
{
for (auto i = 0; i < PARTITION_CONTEXTS; i++) {
for (auto j = 0; j < PARTITION_TYPES - 1; j++) {
auto& partition_probs = m_probability_tables->partition_probs();
partition_probs[i][j] = TRY(diff_update_prob(decoder, partition_probs[i][j]));
}
}
return {};
}
DecoderErrorOr<void> Parser::mv_probs(BooleanDecoder& decoder, FrameContext const& frame_context)
{
for (auto j = 0; j < MV_JOINTS - 1; j++) {
auto& mv_joint_probs = m_probability_tables->mv_joint_probs();
mv_joint_probs[j] = TRY(update_mv_prob(decoder, mv_joint_probs[j]));
}
for (auto i = 0; i < 2; i++) {
auto& mv_sign_prob = m_probability_tables->mv_sign_prob();
mv_sign_prob[i] = TRY(update_mv_prob(decoder, mv_sign_prob[i]));
for (auto j = 0; j < MV_CLASSES - 1; j++) {
auto& mv_class_probs = m_probability_tables->mv_class_probs();
mv_class_probs[i][j] = TRY(update_mv_prob(decoder, mv_class_probs[i][j]));
}
auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob();
mv_class0_bit_prob[i] = TRY(update_mv_prob(decoder, mv_class0_bit_prob[i]));
for (auto j = 0; j < MV_OFFSET_BITS; j++) {
auto& mv_bits_prob = m_probability_tables->mv_bits_prob();
mv_bits_prob[i][j] = TRY(update_mv_prob(decoder, mv_bits_prob[i][j]));
}
}
for (auto i = 0; i < 2; i++) {
for (auto j = 0; j < CLASS0_SIZE; j++) {
for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs();
mv_class0_fr_probs[i][j][k] = TRY(update_mv_prob(decoder, mv_class0_fr_probs[i][j][k]));
}
}
for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
auto& mv_fr_probs = m_probability_tables->mv_fr_probs();
mv_fr_probs[i][k] = TRY(update_mv_prob(decoder, mv_fr_probs[i][k]));
}
}
if (frame_context.high_precision_motion_vectors_allowed) {
for (auto i = 0; i < 2; i++) {
auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob();
auto& mv_hp_prob = m_probability_tables->mv_hp_prob();
mv_class0_hp_prob[i] = TRY(update_mv_prob(decoder, mv_class0_hp_prob[i]));
mv_hp_prob[i] = TRY(update_mv_prob(decoder, mv_hp_prob[i]));
}
}
return {};
}
DecoderErrorOr<u8> Parser::update_mv_prob(BooleanDecoder& decoder, u8 prob)
{
if (TRY_READ(decoder.read_bool(252))) {
return (TRY_READ(decoder.read_literal(7)) << 1u) | 1u;
}
return prob;
}
static u32 get_tile_offset(u32 tile_start, u32 frame_size_in_blocks, u32 tile_size_log2)
{
u32 superblocks = blocks_ceiled_to_superblocks(frame_size_in_blocks);
u32 offset = superblocks_to_blocks((tile_start * superblocks) >> tile_size_log2);
return min(offset, frame_size_in_blocks);
}
DecoderErrorOr<void> Parser::decode_tiles(FrameContext& frame_context)
{
auto log2_dimensions = frame_context.log2_of_tile_counts;
auto tile_cols = 1 << log2_dimensions.width();
auto tile_rows = 1 << log2_dimensions.height();
PartitionContext above_partition_context = DECODER_TRY_ALLOC(PartitionContext::create(superblocks_to_blocks(frame_context.superblock_columns())));
NonZeroTokens above_non_zero_tokens = DECODER_TRY_ALLOC(create_non_zero_tokens(blocks_to_sub_blocks(frame_context.columns()), frame_context.color_config.subsampling_x));
SegmentationPredictionContext above_segmentation_ids = DECODER_TRY_ALLOC(SegmentationPredictionContext::create(frame_context.columns()));
// FIXME: To implement tiled decoding, we'll need to pre-parse the tile positions and sizes into a 2D vector of ReadonlyBytes,
// then run through each column of tiles in top to bottom order afterward. Each column can be sent to a worker thread
// for execution. Each worker thread will want to create a set of above contexts sized to its tile width, then provide
// those to each tile as it decodes them.
for (auto tile_row = 0; tile_row < tile_rows; tile_row++) {
for (auto tile_col = 0; tile_col < tile_cols; tile_col++) {
auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1);
size_t tile_size;
if (last_tile)
tile_size = frame_context.stream.remaining();
else
tile_size = TRY_READ(frame_context.bit_stream.read_bits(32));
auto rows_start = get_tile_offset(tile_row, frame_context.rows(), log2_dimensions.height());
auto rows_end = get_tile_offset(tile_row + 1, frame_context.rows(), log2_dimensions.height());
auto columns_start = get_tile_offset(tile_col, frame_context.columns(), log2_dimensions.width());
auto columns_end = get_tile_offset(tile_col + 1, frame_context.columns(), log2_dimensions.width());
auto width = columns_end - columns_start;
auto above_partition_context_for_tile = above_partition_context.span().slice(columns_start, superblocks_to_blocks(blocks_ceiled_to_superblocks(width)));
auto above_non_zero_tokens_view = create_non_zero_tokens_view(above_non_zero_tokens, blocks_to_sub_blocks(columns_start), blocks_to_sub_blocks(columns_end - columns_start), frame_context.color_config.subsampling_x);
auto above_segmentation_ids_for_tile = safe_slice(above_segmentation_ids.span(), columns_start, columns_end - columns_start);
auto tile_context = TRY(TileContext::try_create(frame_context, tile_size, rows_start, rows_end, columns_start, columns_end, above_partition_context_for_tile, above_non_zero_tokens_view, above_segmentation_ids_for_tile));
TRY(decode_tile(tile_context));
TRY_READ(frame_context.bit_stream.discard(tile_size));
}
}
return {};
}
DecoderErrorOr<void> Parser::decode_tile(TileContext& tile_context)
{
for (auto row = tile_context.rows_start; row < tile_context.rows_end; row += 8) {
clear_left_context(tile_context);
for (auto col = tile_context.columns_start; col < tile_context.columns_end; col += 8) {
TRY(decode_partition(tile_context, row, col, Block_64x64));
}
}
TRY_READ(tile_context.decoder.finish_decode());
return {};
}
void Parser::clear_left_context(TileContext& tile_context)
{
for (auto& context_for_plane : tile_context.left_non_zero_tokens)
context_for_plane.fill_with(false);
tile_context.left_segmentation_ids.fill_with(0);
tile_context.left_partition_context.fill_with(0);
}
DecoderErrorOr<void> Parser::decode_partition(TileContext& tile_context, u32 row, u32 column, BlockSubsize subsize)
{
if (row >= tile_context.frame_context.rows() || column >= tile_context.frame_context.columns())
return {};
u8 num_8x8 = num_8x8_blocks_wide_lookup[subsize];
auto half_block_8x8 = num_8x8 >> 1;
bool has_rows = (row + half_block_8x8) < tile_context.frame_context.rows();
bool has_cols = (column + half_block_8x8) < tile_context.frame_context.columns();
u32 row_in_tile = row - tile_context.rows_start;
u32 column_in_tile = column - tile_context.columns_start;
auto partition = TRY_READ(TreeParser::parse_partition(tile_context.decoder, *m_probability_tables, *m_syntax_element_counter, has_rows, has_cols, subsize, num_8x8, tile_context.above_partition_context, tile_context.left_partition_context.span(), row_in_tile, column_in_tile, !tile_context.frame_context.is_inter_predicted()));
auto child_subsize = subsize_lookup[partition][subsize];
if (child_subsize < Block_8x8 || partition == PartitionNone) {
TRY(decode_block(tile_context, row, column, child_subsize));
} else if (partition == PartitionHorizontal) {
TRY(decode_block(tile_context, row, column, child_subsize));
if (has_rows)
TRY(decode_block(tile_context, row + half_block_8x8, column, child_subsize));
} else if (partition == PartitionVertical) {
TRY(decode_block(tile_context, row, column, child_subsize));
if (has_cols)
TRY(decode_block(tile_context, row, column + half_block_8x8, child_subsize));
} else {
TRY(decode_partition(tile_context, row, column, child_subsize));
TRY(decode_partition(tile_context, row, column + half_block_8x8, child_subsize));
TRY(decode_partition(tile_context, row + half_block_8x8, column, child_subsize));
TRY(decode_partition(tile_context, row + half_block_8x8, column + half_block_8x8, child_subsize));
}
if (subsize == Block_8x8 || partition != PartitionSplit) {
auto above_context = 15 >> b_width_log2_lookup[child_subsize];
auto left_context = 15 >> b_height_log2_lookup[child_subsize];
for (size_t i = 0; i < num_8x8; i++) {
tile_context.above_partition_context[column_in_tile + i] = above_context;
tile_context.left_partition_context[row_in_tile + i] = left_context;
}
}
return {};
}
size_t Parser::get_image_index(FrameContext const& frame_context, u32 row, u32 column) const
{
VERIFY(row < frame_context.rows() && column < frame_context.columns());
return row * frame_context.columns() + column;
}
DecoderErrorOr<void> Parser::decode_block(TileContext& tile_context, u32 row, u32 column, BlockSubsize subsize)
{
auto above_context = row > 0 ? tile_context.frame_block_contexts().at(row - 1, column) : FrameBlockContext();
auto left_context = column > tile_context.columns_start ? tile_context.frame_block_contexts().at(row, column - 1) : FrameBlockContext();
auto block_context = BlockContext::create(tile_context, row, column, subsize);
TRY(mode_info(block_context, above_context, left_context));
auto had_residual_tokens = TRY(residual(block_context, above_context.is_available, left_context.is_available));
if (block_context.is_inter_predicted() && subsize >= Block_8x8 && !had_residual_tokens)
block_context.should_skip_residuals = true;
for (size_t y = 0; y < block_context.contexts_view.height(); y++) {
for (size_t x = 0; x < block_context.contexts_view.width(); x++) {
auto sub_block_context = FrameBlockContext { true, block_context.should_skip_residuals, block_context.transform_size, block_context.y_prediction_mode(), block_context.sub_block_prediction_modes, block_context.interpolation_filter, block_context.reference_frame_types, block_context.sub_block_motion_vectors, block_context.segment_id };
block_context.contexts_view.at(y, x) = sub_block_context;
VERIFY(block_context.frame_block_contexts().at(row + y, column + x).transform_size == sub_block_context.transform_size);
}
}
return {};
}
DecoderErrorOr<void> Parser::mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context)
{
if (block_context.frame_context.is_inter_predicted())
TRY(inter_frame_mode_info(block_context, above_context, left_context));
else
TRY(intra_frame_mode_info(block_context, above_context, left_context));
return {};
}
DecoderErrorOr<void> Parser::intra_frame_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context)
{
block_context.reference_frame_types = { ReferenceFrameType::None, ReferenceFrameType::None };
VERIFY(!block_context.is_inter_predicted());
TRY(set_intra_segment_id(block_context));
block_context.should_skip_residuals = TRY(read_should_skip_residuals(block_context, above_context, left_context));
block_context.transform_size = TRY(read_tx_size(block_context, above_context, left_context, true));
// FIXME: This if statement is also present in parse_default_intra_mode. The selection of parameters for
// the probability table lookup should be inlined here.
if (block_context.size >= Block_8x8) {
auto mode = TRY_READ(TreeParser::parse_default_intra_mode(block_context.decoder, *m_probability_tables, block_context.size, above_context, left_context, block_context.sub_block_prediction_modes, 0, 0));
for (auto& block_sub_mode : block_context.sub_block_prediction_modes)
block_sub_mode = mode;
} else {
auto size_in_sub_blocks = block_context.get_size_in_sub_blocks();
for (auto idy = 0; idy < 2; idy += size_in_sub_blocks.height()) {
for (auto idx = 0; idx < 2; idx += size_in_sub_blocks.width()) {
auto sub_mode = TRY_READ(TreeParser::parse_default_intra_mode(block_context.decoder, *m_probability_tables, block_context.size, above_context, left_context, block_context.sub_block_prediction_modes, idx, idy));
for (auto y = 0; y < size_in_sub_blocks.height(); y++) {
for (auto x = 0; x < size_in_sub_blocks.width(); x++) {
auto index = (idy + y) * 2 + idx + x;
block_context.sub_block_prediction_modes[index] = sub_mode;
}
}
}
}
}
block_context.uv_prediction_mode = TRY_READ(TreeParser::parse_default_uv_mode(block_context.decoder, *m_probability_tables, block_context.y_prediction_mode()));
return {};
}
DecoderErrorOr<void> Parser::set_intra_segment_id(BlockContext& block_context)
{
if (block_context.frame_context.segmentation_enabled && block_context.frame_context.use_full_segment_id_tree)
block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(block_context.decoder, block_context.frame_context.full_segment_id_tree_probabilities));
else
block_context.segment_id = 0;
return {};
}
DecoderErrorOr<bool> Parser::read_should_skip_residuals(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context)
{
if (seg_feature_active(block_context, SEG_LVL_SKIP))
return true;
return TRY_READ(TreeParser::parse_skip(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, above_context, left_context));
}
bool Parser::seg_feature_active(BlockContext const& block_context, u8 feature)
{
return block_context.frame_context.segmentation_features[block_context.segment_id][feature].enabled;
}
DecoderErrorOr<TransformSize> Parser::read_tx_size(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context, bool allow_select)
{
auto max_tx_size = max_txsize_lookup[block_context.size];
if (allow_select && block_context.frame_context.transform_mode == TransformMode::Select && block_context.size >= Block_8x8)
return (TRY_READ(TreeParser::parse_tx_size(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, max_tx_size, above_context, left_context)));
return min(max_tx_size, tx_mode_to_biggest_tx_size[to_underlying(block_context.frame_context.transform_mode)]);
}
DecoderErrorOr<void> Parser::inter_frame_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context)
{
TRY(set_inter_segment_id(block_context));
block_context.should_skip_residuals = TRY(read_should_skip_residuals(block_context, above_context, left_context));
auto is_inter = TRY(read_is_inter(block_context, above_context, left_context));
block_context.transform_size = TRY(read_tx_size(block_context, above_context, left_context, !block_context.should_skip_residuals || !is_inter));
if (is_inter) {
TRY(inter_block_mode_info(block_context, above_context, left_context));
} else {
TRY(intra_block_mode_info(block_context));
}
return {};
}
DecoderErrorOr<void> Parser::set_inter_segment_id(BlockContext& block_context)
{
if (!block_context.frame_context.segmentation_enabled) {
block_context.segment_id = 0;
return {};
}
auto predicted_segment_id = get_segment_id(block_context);
if (!block_context.frame_context.use_full_segment_id_tree) {
block_context.segment_id = predicted_segment_id;
return {};
}
if (!block_context.frame_context.use_predicted_segment_id_tree) {
block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(block_context.decoder, block_context.frame_context.full_segment_id_tree_probabilities));
return {};
}
auto above_segmentation_id = block_context.tile_context.above_segmentation_ids[block_context.row - block_context.tile_context.rows_start];
auto left_segmentation_id = block_context.tile_context.left_segmentation_ids[block_context.column - block_context.tile_context.columns_start];
auto seg_id_predicted = TRY_READ(TreeParser::parse_segment_id_predicted(block_context.decoder, block_context.frame_context.predicted_segment_id_tree_probabilities, above_segmentation_id, left_segmentation_id));
if (seg_id_predicted)
block_context.segment_id = predicted_segment_id;
else
block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(block_context.decoder, block_context.frame_context.full_segment_id_tree_probabilities));
// (7.4.1) AboveSegPredContext[ i ] only needs to be set to 0 for i = 0..MiCols-1.
// This is taken care of by the slicing in BlockContext.
block_context.above_segmentation_ids.fill(seg_id_predicted);
// (7.4.1) LeftSegPredContext[ i ] only needs to be set to 0 for i = 0..MiRows-1.
// This is taken care of by the slicing in BlockContext.
block_context.left_segmentation_ids.fill(seg_id_predicted);
return {};
}
u8 Parser::get_segment_id(BlockContext const& block_context)
{
auto bw = num_8x8_blocks_wide_lookup[block_context.size];
auto bh = num_8x8_blocks_high_lookup[block_context.size];
auto xmis = min(block_context.frame_context.columns() - block_context.column, (u32)bw);
auto ymis = min(block_context.frame_context.rows() - block_context.row, (u32)bh);
u8 segment = 7;
for (size_t y = 0; y < ymis; y++) {
for (size_t x = 0; x < xmis; x++) {
segment = min(segment, m_previous_block_contexts.index_at(block_context.row + y, block_context.column + x));
}
}
return segment;
}
DecoderErrorOr<bool> Parser::read_is_inter(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context)
{
if (seg_feature_active(block_context, SEG_LVL_REF_FRAME))
return block_context.frame_context.segmentation_features[block_context.segment_id][SEG_LVL_REF_FRAME].value != ReferenceFrameType::None;
return TRY_READ(TreeParser::parse_block_is_inter_predicted(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, above_context, left_context));
}
DecoderErrorOr<void> Parser::intra_block_mode_info(BlockContext& block_context)
{
block_context.reference_frame_types = { ReferenceFrameType::None, ReferenceFrameType::None };
VERIFY(!block_context.is_inter_predicted());
auto& sub_modes = block_context.sub_block_prediction_modes;
if (block_context.size >= Block_8x8) {
auto mode = TRY_READ(TreeParser::parse_intra_mode(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, block_context.size));
for (auto& block_sub_mode : sub_modes)
block_sub_mode = mode;
} else {
auto size_in_sub_blocks = block_context.get_size_in_sub_blocks();
for (auto idy = 0; idy < 2; idy += size_in_sub_blocks.height()) {
for (auto idx = 0; idx < 2; idx += size_in_sub_blocks.width()) {
auto sub_intra_mode = TRY_READ(TreeParser::parse_sub_intra_mode(block_context.decoder, *m_probability_tables, *m_syntax_element_counter));
for (auto y = 0; y < size_in_sub_blocks.height(); y++) {
for (auto x = 0; x < size_in_sub_blocks.width(); x++)
sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode;
}
}
}
}
block_context.uv_prediction_mode = TRY_READ(TreeParser::parse_uv_mode(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, block_context.y_prediction_mode()));
return {};
}
static void select_best_reference_motion_vectors(BlockContext& block_context, MotionVectorPair reference_motion_vectors, BlockMotionVectorCandidates& candidates, ReferenceIndex);
DecoderErrorOr<void> Parser::inter_block_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context)
{
TRY(read_ref_frames(block_context, above_context, left_context));
VERIFY(block_context.is_inter_predicted());
BlockMotionVectorCandidates motion_vector_candidates;
auto reference_motion_vectors = find_reference_motion_vectors(block_context, block_context.reference_frame_types.primary, -1);
select_best_reference_motion_vectors(block_context, reference_motion_vectors, motion_vector_candidates, ReferenceIndex::Primary);
if (block_context.is_compound()) {
auto reference_motion_vectors = find_reference_motion_vectors(block_context, block_context.reference_frame_types.secondary, -1);
select_best_reference_motion_vectors(block_context, reference_motion_vectors, motion_vector_candidates, ReferenceIndex::Secondary);
}
if (seg_feature_active(block_context, SEG_LVL_SKIP)) {
block_context.y_prediction_mode() = PredictionMode::ZeroMv;
} else if (block_context.size >= Block_8x8) {
block_context.y_prediction_mode() = TRY_READ(TreeParser::parse_inter_mode(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, block_context.mode_context[block_context.reference_frame_types.primary]));
}
if (block_context.frame_context.interpolation_filter == Switchable)
block_context.interpolation_filter = TRY_READ(TreeParser::parse_interpolation_filter(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, above_context, left_context));
else
block_context.interpolation_filter = block_context.frame_context.interpolation_filter;
if (block_context.size < Block_8x8) {
auto size_in_sub_blocks = block_context.get_size_in_sub_blocks();
for (auto idy = 0; idy < 2; idy += size_in_sub_blocks.height()) {
for (auto idx = 0; idx < 2; idx += size_in_sub_blocks.width()) {
block_context.y_prediction_mode() = TRY_READ(TreeParser::parse_inter_mode(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, block_context.mode_context[block_context.reference_frame_types.primary]));
if (block_context.y_prediction_mode() == PredictionMode::NearestMv || block_context.y_prediction_mode() == PredictionMode::NearMv) {
select_best_sub_block_reference_motion_vectors(block_context, motion_vector_candidates, idy * 2 + idx, ReferenceIndex::Primary);
if (block_context.is_compound())
select_best_sub_block_reference_motion_vectors(block_context, motion_vector_candidates, idy * 2 + idx, ReferenceIndex::Secondary);
}
auto new_motion_vector_pair = TRY(get_motion_vector(block_context, motion_vector_candidates));
for (auto y = 0; y < size_in_sub_blocks.height(); y++) {
for (auto x = 0; x < size_in_sub_blocks.width(); x++) {
auto sub_block_index = (idy + y) * 2 + idx + x;
block_context.sub_block_motion_vectors[sub_block_index] = new_motion_vector_pair;
}
}
}
}
return {};
}
auto new_motion_vector_pair = TRY(get_motion_vector(block_context, motion_vector_candidates));
for (auto block = 0; block < 4; block++)
block_context.sub_block_motion_vectors[block] = new_motion_vector_pair;
return {};
}
DecoderErrorOr<void> Parser::read_ref_frames(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context)
{
if (seg_feature_active(block_context, SEG_LVL_REF_FRAME)) {
block_context.reference_frame_types = { static_cast<ReferenceFrameType>(block_context.frame_context.segmentation_features[block_context.segment_id][SEG_LVL_REF_FRAME].value), ReferenceFrameType::None };
return {};
}
ReferenceMode compound_mode = block_context.frame_context.reference_mode;
auto fixed_reference = block_context.frame_context.fixed_reference_type;
if (compound_mode == ReferenceModeSelect)
compound_mode = TRY_READ(TreeParser::parse_comp_mode(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, fixed_reference, above_context, left_context));
if (compound_mode == CompoundReference) {
auto variable_references = block_context.frame_context.variable_reference_types;
auto fixed_reference_index = ReferenceIndex::Primary;
auto variable_reference_index = ReferenceIndex::Secondary;
if (block_context.frame_context.reference_frame_sign_biases[fixed_reference])
swap(fixed_reference_index, variable_reference_index);
auto variable_reference_selection = TRY_READ(TreeParser::parse_comp_ref(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, fixed_reference, variable_references, variable_reference_index, above_context, left_context));
block_context.reference_frame_types[fixed_reference_index] = fixed_reference;
block_context.reference_frame_types[variable_reference_index] = variable_references[variable_reference_selection];
return {};
}
// FIXME: Maybe consolidate this into a tree. Context is different between part 1 and 2 but still, it would look nice here.
ReferenceFrameType primary_type = ReferenceFrameType::LastFrame;
auto single_ref_p1 = TRY_READ(TreeParser::parse_single_ref_part_1(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, above_context, left_context));
if (single_ref_p1) {
auto single_ref_p2 = TRY_READ(TreeParser::parse_single_ref_part_2(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, above_context, left_context));
primary_type = single_ref_p2 ? ReferenceFrameType::AltRefFrame : ReferenceFrameType::GoldenFrame;
}
block_context.reference_frame_types = { primary_type, ReferenceFrameType::None };
return {};
}
// assign_mv( isCompound ) in the spec.
DecoderErrorOr<MotionVectorPair> Parser::get_motion_vector(BlockContext const& block_context, BlockMotionVectorCandidates const& candidates)
{
MotionVectorPair result;
auto read_one = [&](ReferenceIndex index) -> DecoderErrorOr<void> {
switch (block_context.y_prediction_mode()) {
case PredictionMode::NewMv:
result[index] = TRY(read_motion_vector(block_context, candidates, index));
break;
case PredictionMode::NearestMv:
result[index] = candidates[index].nearest_vector;
break;
case PredictionMode::NearMv:
result[index] = candidates[index].near_vector;
break;
default:
result[index] = {};
break;
}
return {};
};
TRY(read_one(ReferenceIndex::Primary));
if (block_context.is_compound())
TRY(read_one(ReferenceIndex::Secondary));
return result;
}
// use_mv_hp( deltaMv ) in the spec.
static bool should_use_high_precision_motion_vector(MotionVector const& delta_vector)
{
return (abs(delta_vector.row()) >> 3) < COMPANDED_MVREF_THRESH && (abs(delta_vector.column()) >> 3) < COMPANDED_MVREF_THRESH;
}
// read_mv( ref ) in the spec.
DecoderErrorOr<MotionVector> Parser::read_motion_vector(BlockContext const& block_context, BlockMotionVectorCandidates const& candidates, ReferenceIndex reference_index)
{
auto use_high_precision = block_context.frame_context.high_precision_motion_vectors_allowed && should_use_high_precision_motion_vector(candidates[reference_index].best_vector);
MotionVector delta_vector;
auto joint = TRY_READ(TreeParser::parse_motion_vector_joint(block_context.decoder, *m_probability_tables, *m_syntax_element_counter));
if ((joint & MotionVectorNonZeroRow) != 0)
delta_vector.set_row(TRY(read_single_motion_vector_component(block_context.decoder, 0, use_high_precision)));
if ((joint & MotionVectorNonZeroColumn) != 0)
delta_vector.set_column(TRY(read_single_motion_vector_component(block_context.decoder, 1, use_high_precision)));
return candidates[reference_index].best_vector + delta_vector;
}
// read_mv_component( comp ) in the spec.
DecoderErrorOr<i32> Parser::read_single_motion_vector_component(BooleanDecoder& decoder, u8 component, bool use_high_precision)
{
auto mv_sign = TRY_READ(TreeParser::parse_motion_vector_sign(decoder, *m_probability_tables, *m_syntax_element_counter, component));
auto mv_class = TRY_READ(TreeParser::parse_motion_vector_class(decoder, *m_probability_tables, *m_syntax_element_counter, component));
u32 magnitude;
if (mv_class == MvClass0) {
auto mv_class0_bit = TRY_READ(TreeParser::parse_motion_vector_class0_bit(decoder, *m_probability_tables, *m_syntax_element_counter, component));
auto mv_class0_fr = TRY_READ(TreeParser::parse_motion_vector_class0_fr(decoder, *m_probability_tables, *m_syntax_element_counter, component, mv_class0_bit));
auto mv_class0_hp = TRY_READ(TreeParser::parse_motion_vector_class0_hp(decoder, *m_probability_tables, *m_syntax_element_counter, component, use_high_precision));
magnitude = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1;
} else {
u32 bits = 0;
for (u8 i = 0; i < mv_class; i++) {
auto mv_bit = TRY_READ(TreeParser::parse_motion_vector_bit(decoder, *m_probability_tables, *m_syntax_element_counter, component, i));
bits |= mv_bit << i;
}
magnitude = CLASS0_SIZE << (mv_class + 2);
auto mv_fr = TRY_READ(TreeParser::parse_motion_vector_fr(decoder, *m_probability_tables, *m_syntax_element_counter, component));
auto mv_hp = TRY_READ(TreeParser::parse_motion_vector_hp(decoder, *m_probability_tables, *m_syntax_element_counter, component, use_high_precision));
magnitude += ((bits << 3) | (mv_fr << 1) | mv_hp) + 1;
}
return (mv_sign ? -1 : 1) * static_cast<i32>(magnitude);
}
Gfx::Point<size_t> Parser::get_decoded_point_for_plane(FrameContext const& frame_context, u32 column, u32 row, u8 plane)
{
(void)frame_context;
if (plane == 0)
return { column * 8, row * 8 };
return { (column * 8) >> frame_context.color_config.subsampling_x, (row * 8) >> frame_context.color_config.subsampling_y };
}
Gfx::Size<size_t> Parser::get_decoded_size_for_plane(FrameContext const& frame_context, u8 plane)
{
auto point = get_decoded_point_for_plane(frame_context, frame_context.columns(), frame_context.rows(), plane);
return { point.x(), point.y() };
}
static TransformSize get_uv_transform_size(TransformSize transform_size, BlockSubsize size_for_plane)
{
return min(transform_size, max_txsize_lookup[size_for_plane]);
}
static TransformSet select_transform_type(BlockContext const& block_context, u8 plane, TransformSize transform_size, u32 block_index)
{
if (plane > 0 || transform_size == Transform_32x32)
return TransformSet { TransformType::DCT, TransformType::DCT };
if (transform_size == Transform_4x4) {
if (block_context.frame_context.is_lossless() || block_context.is_inter_predicted())
return TransformSet { TransformType::DCT, TransformType::DCT };
return mode_to_txfm_map[to_underlying(block_context.size < Block_8x8 ? block_context.sub_block_prediction_modes[block_index] : block_context.y_prediction_mode())];
}
return mode_to_txfm_map[to_underlying(block_context.y_prediction_mode())];
}
DecoderErrorOr<bool> Parser::residual(BlockContext& block_context, bool has_block_above, bool has_block_left)
{
bool block_had_non_zero_tokens = false;
Array<u8, 1024> token_cache;
for (u8 plane = 0; plane < 3; plane++) {
auto plane_subsampling_x = (plane > 0) ? block_context.frame_context.color_config.subsampling_x : false;
auto plane_subsampling_y = (plane > 0) ? block_context.frame_context.color_config.subsampling_y : false;
auto plane_size = get_subsampled_block_size(block_context.size, plane_subsampling_x, plane_subsampling_y);
auto transform_size = get_uv_transform_size(block_context.transform_size, plane_size);
auto transform_size_in_sub_blocks = transform_size_to_sub_blocks(transform_size);
auto block_size_in_sub_blocks = block_size_to_sub_blocks(plane_size);
auto base_x_in_pixels = (blocks_to_pixels(block_context.column)) >> plane_subsampling_x;
auto base_y_in_pixels = (blocks_to_pixels(block_context.row)) >> plane_subsampling_y;
if (block_context.is_inter_predicted()) {
if (block_context.size < Block_8x8) {
for (auto y = 0; y < block_size_in_sub_blocks.height(); y++) {
for (auto x = 0; x < block_size_in_sub_blocks.width(); x++) {
TRY(m_decoder.predict_inter(plane, block_context, base_x_in_pixels + sub_blocks_to_pixels(x), base_y_in_pixels + sub_blocks_to_pixels(y), sub_blocks_to_pixels(1), sub_blocks_to_pixels(1), (y * block_size_in_sub_blocks.width()) + x));
}
}
} else {
TRY(m_decoder.predict_inter(plane, block_context, base_x_in_pixels, base_y_in_pixels, sub_blocks_to_pixels(block_size_in_sub_blocks.width()), sub_blocks_to_pixels(block_size_in_sub_blocks.height()), 0));
}
}
auto frame_right_in_pixels = (blocks_to_pixels(block_context.frame_context.columns())) >> plane_subsampling_x;
auto frame_bottom_in_pixels = (blocks_to_pixels(block_context.frame_context.rows())) >> plane_subsampling_y;
auto sub_block_index = 0;
for (u32 y = 0; y < block_size_in_sub_blocks.height(); y += transform_size_in_sub_blocks) {
for (u32 x = 0; x < block_size_in_sub_blocks.width(); x += transform_size_in_sub_blocks) {
auto transform_x_in_px = base_x_in_pixels + sub_blocks_to_pixels(x);
auto transform_y_in_px = base_y_in_pixels + sub_blocks_to_pixels(y);
auto sub_block_had_non_zero_tokens = false;
if (transform_x_in_px < frame_right_in_pixels && transform_y_in_px < frame_bottom_in_pixels) {
if (!block_context.is_inter_predicted())
TRY(m_decoder.predict_intra(plane, block_context, transform_x_in_px, transform_y_in_px, has_block_left || x > 0, has_block_above || y > 0, (x + transform_size_in_sub_blocks) < block_size_in_sub_blocks.width(), transform_size, sub_block_index));
if (!block_context.should_skip_residuals) {
auto transform_set = select_transform_type(block_context, plane, transform_size, sub_block_index);
sub_block_had_non_zero_tokens = TRY(tokens(block_context, plane, x, y, transform_size, transform_set, token_cache));
block_had_non_zero_tokens = block_had_non_zero_tokens || sub_block_had_non_zero_tokens;
TRY(m_decoder.reconstruct(plane, block_context, transform_x_in_px, transform_y_in_px, transform_size, transform_set));
}
}
auto& above_sub_block_tokens = block_context.above_non_zero_tokens[plane];
auto transform_right_in_sub_blocks = min(x + transform_size_in_sub_blocks, above_sub_block_tokens.size());
for (size_t inside_x = x; inside_x < transform_right_in_sub_blocks; inside_x++)
above_sub_block_tokens[inside_x] = sub_block_had_non_zero_tokens;
auto& left_sub_block_context = block_context.left_non_zero_tokens[plane];
auto transform_bottom_in_sub_blocks = min(y + transform_size_in_sub_blocks, left_sub_block_context.size());
for (size_t inside_y = y; inside_y < transform_bottom_in_sub_blocks; inside_y++)
left_sub_block_context[inside_y] = sub_block_had_non_zero_tokens;
sub_block_index++;
}
}
}
return block_had_non_zero_tokens;
}
static u16 const* get_scan(TransformSize transform_size, TransformSet transform_set)
{
constexpr TransformSet adst_dct { TransformType::ADST, TransformType::DCT };
constexpr TransformSet dct_adst { TransformType::DCT, TransformType::ADST };
if (transform_size == Transform_4x4) {
if (transform_set == adst_dct)
return row_scan_4x4;
if (transform_set == dct_adst)
return col_scan_4x4;
return default_scan_4x4;
}
if (transform_size == Transform_8x8) {
if (transform_set == adst_dct)
return row_scan_8x8;
if (transform_set == dct_adst)
return col_scan_8x8;
return default_scan_8x8;
}
if (transform_size == Transform_16x16) {
if (transform_set == adst_dct)
return row_scan_16x16;
if (transform_set == dct_adst)
return col_scan_16x16;
return default_scan_16x16;
}
return default_scan_32x32;
}
DecoderErrorOr<bool> Parser::tokens(BlockContext& block_context, size_t plane, u32 sub_block_column, u32 sub_block_row, TransformSize transform_size, TransformSet transform_set, Array<u8, 1024> token_cache)
{
block_context.residual_tokens.fill(0);
auto const* scan = get_scan(transform_size, transform_set);
auto check_for_more_coefficients = true;
u16 coef_index = 0;
u16 transform_pixel_count = 16 << (transform_size << 1);
for (; coef_index < transform_pixel_count; coef_index++) {
auto band = (transform_size == Transform_4x4) ? coefband_4x4[coef_index] : coefband_8x8plus[coef_index];
auto token_position = scan[coef_index];
TokensContext tokens_context;
if (coef_index == 0)
tokens_context = TreeParser::get_context_for_first_token(block_context.above_non_zero_tokens, block_context.left_non_zero_tokens, transform_size, plane, sub_block_column, sub_block_row, block_context.is_inter_predicted(), band);
else
tokens_context = TreeParser::get_context_for_other_tokens(token_cache, transform_size, transform_set, plane, token_position, block_context.is_inter_predicted(), band);
if (check_for_more_coefficients && !TRY_READ(TreeParser::parse_more_coefficients(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, tokens_context)))
break;
auto token = TRY_READ(TreeParser::parse_token(block_context.decoder, *m_probability_tables, *m_syntax_element_counter, tokens_context));
token_cache[token_position] = energy_class[token];
i32 coef;
if (token == ZeroToken) {
coef = 0;
check_for_more_coefficients = false;
} else {
coef = TRY(read_coef(block_context.decoder, block_context.frame_context.color_config.bit_depth, token));
check_for_more_coefficients = true;
}
block_context.residual_tokens[token_position] = coef;
}
return coef_index > 0;
}
DecoderErrorOr<i32> Parser::read_coef(BooleanDecoder& decoder, u8 bit_depth, Token token)
{
auto cat = extra_bits[token][0];
auto num_extra = extra_bits[token][1];
i32 coef = extra_bits[token][2];
if (token == DctValCat6) {
for (size_t e = 0; e < (u8)(bit_depth - 8); e++) {
auto high_bit = TRY_READ(decoder.read_bool(255));
coef += high_bit << (5 + bit_depth - e);
}
}
for (size_t e = 0; e < num_extra; e++) {
auto coef_bit = TRY_READ(decoder.read_bool(cat_probs[cat][e]));
coef += coef_bit << (num_extra - 1 - e);
}
bool sign_bit = TRY_READ(decoder.read_literal(1));
coef = sign_bit ? -coef : coef;
return coef;
}
// is_inside( candidateR, candidateC ) in the spec.
static bool motion_vector_is_inside_tile(TileContext const& tile_context, MotionVector vector)
{
if (vector.row() < 0)
return false;
if (vector.column() < 0)
return false;
u32 row_positive = vector.row();
u32 column_positive = vector.column();
return row_positive < tile_context.frame_context.rows() && column_positive >= tile_context.columns_start && column_positive < tile_context.columns_end;
}
// add_mv_ref_list( refList ) in the spec.
static void add_motion_vector_to_list_deduped(MotionVector const& vector, Vector<MotionVector, 2>& list)
{
if (list.size() >= 2)
return;
if (list.size() == 1 && vector == list[0])
return;
list.append(vector);
}
// get_block_mv( candidateR, candidateC, refList, usePrev ) in the spec.
MotionVectorCandidate Parser::get_motion_vector_from_current_or_previous_frame(BlockContext const& block_context, MotionVector candidate_vector, ReferenceIndex reference_index, bool use_prev)
{
if (use_prev) {
auto const& prev_context = m_previous_block_contexts.at(candidate_vector.row(), candidate_vector.column());
return { prev_context.ref_frames[reference_index], prev_context.primary_motion_vector_pair[reference_index] };
}
auto const& current_context = block_context.frame_block_contexts().at(candidate_vector.row(), candidate_vector.column());
return { current_context.ref_frames[reference_index], current_context.primary_motion_vector_pair()[reference_index] };
}
// if_same_ref_frame_add_mv( candidateR, candidateC, refFrame, usePrev ) in the spec.
void Parser::add_motion_vector_if_reference_frame_type_is_same(BlockContext const& block_context, MotionVector candidate_vector, ReferenceFrameType ref_frame, Vector<MotionVector, 2>& list, bool use_prev)
{
for (auto i = 0u; i < 2; i++) {
auto candidate = get_motion_vector_from_current_or_previous_frame(block_context, candidate_vector, static_cast<ReferenceIndex>(i), use_prev);
if (candidate.type == ref_frame) {
add_motion_vector_to_list_deduped(candidate.vector, list);
return;
}
}
}
// scale_mv( refList, refFrame ) in the spec.
static void apply_sign_bias_to_motion_vector(FrameContext const& frame_context, MotionVectorCandidate& candidate, ReferenceFrameType ref_frame)
{
if (frame_context.reference_frame_sign_biases[candidate.type] != frame_context.reference_frame_sign_biases[ref_frame])
candidate.vector *= -1;
}
// if_diff_ref_frame_add_mv( candidateR, candidateC, refFrame, usePrev ) in the spec.
void Parser::add_motion_vector_if_reference_frame_type_is_different(BlockContext const& block_context, MotionVector candidate_vector, ReferenceFrameType ref_frame, Vector<MotionVector, 2>& list, bool use_prev)
{
auto first_candidate = get_motion_vector_from_current_or_previous_frame(block_context, candidate_vector, ReferenceIndex::Primary, use_prev);
if (first_candidate.type > ReferenceFrameType::None && first_candidate.type != ref_frame) {
apply_sign_bias_to_motion_vector(block_context.frame_context, first_candidate, ref_frame);
add_motion_vector_to_list_deduped(first_candidate.vector, list);
}
auto second_candidate = get_motion_vector_from_current_or_previous_frame(block_context, candidate_vector, ReferenceIndex::Secondary, use_prev);
auto mvs_are_same = first_candidate.vector == second_candidate.vector;
if (second_candidate.type > ReferenceFrameType::None && second_candidate.type != ref_frame && !mvs_are_same) {
apply_sign_bias_to_motion_vector(block_context.frame_context, second_candidate, ref_frame);
add_motion_vector_to_list_deduped(second_candidate.vector, list);
}
}
// This function handles both clamp_mv_row( mvec, border ) and clamp_mv_col( mvec, border ) in the spec.
static MotionVector clamp_motion_vector(BlockContext const& block_context, MotionVector vector, i32 border)
{
i32 blocks_high = num_8x8_blocks_high_lookup[block_context.size];
// Casts must be done here to prevent subtraction underflow from wrapping the values.
i32 mb_to_top_edge = -8 * (static_cast<i32>(block_context.row) * MI_SIZE);
i32 mb_to_bottom_edge = 8 * ((static_cast<i32>(block_context.frame_context.rows()) - blocks_high - static_cast<i32>(block_context.row)) * MI_SIZE);
i32 blocks_wide = num_8x8_blocks_wide_lookup[block_context.size];
i32 mb_to_left_edge = -8 * (static_cast<i32>(block_context.column) * MI_SIZE);
i32 mb_to_right_edge = 8 * ((static_cast<i32>(block_context.frame_context.columns()) - blocks_wide - static_cast<i32>(block_context.column)) * MI_SIZE);
return {
clip_3(mb_to_top_edge - border, mb_to_bottom_edge + border, vector.row()),
clip_3(mb_to_left_edge - border, mb_to_right_edge + border, vector.column())
};
}
// 6.5.1 Find MV refs syntax
// find_mv_refs( refFrame, block ) in the spec.
MotionVectorPair Parser::find_reference_motion_vectors(BlockContext& block_context, ReferenceFrameType reference_frame, i32 block)
{
// FIXME: We should be able to change behavior based on the reference motion vector that will be selected.
// If block_context.y_prediction_mode() != NearMv, then we only need the first motion vector that is added to our result.
// This behavior should combine this function with select_best_reference_motion_vectors(). When that is done, check whether
// the motion vector clamping in that function is always a larger area than in this function. If so, we can drop that call.
bool different_ref_found = false;
u8 context_counter = 0;
Vector<MotionVector, 2> list;
MotionVector base_coordinates = MotionVector(block_context.row, block_context.column);
for (auto i = 0u; i < 2; i++) {
auto offset_vector = mv_ref_blocks[block_context.size][i];
auto candidate = base_coordinates + offset_vector;
if (motion_vector_is_inside_tile(block_context.tile_context, candidate)) {
different_ref_found = true;
auto context = block_context.frame_block_contexts().at(candidate.row(), candidate.column());
context_counter += mode_2_counter[to_underlying(context.y_mode)];
for (auto i = 0u; i < 2; i++) {
auto reference_index = static_cast<ReferenceIndex>(i);
if (context.ref_frames[reference_index] == reference_frame) {
// This section up until add_mv_ref_list() is defined in spec as get_sub_block_mv().
constexpr u8 idx_n_column_to_subblock[4][2] = {
{ 1, 2 },
{ 1, 3 },
{ 3, 2 },
{ 3, 3 }
};
auto index = block >= 0 ? idx_n_column_to_subblock[block][offset_vector.column() == 0] : 3;
add_motion_vector_to_list_deduped(context.sub_block_motion_vectors[index][reference_index], list);
break;
}
}
}
}
block_context.mode_context[reference_frame] = counter_to_context[context_counter];
for (auto i = 2u; i < MVREF_NEIGHBOURS; i++) {
MotionVector candidate = base_coordinates + mv_ref_blocks[block_context.size][i];
if (motion_vector_is_inside_tile(block_context.tile_context, candidate)) {
different_ref_found = true;
add_motion_vector_if_reference_frame_type_is_same(block_context, candidate, reference_frame, list, false);
}
}
if (block_context.frame_context.use_previous_frame_motion_vectors)
add_motion_vector_if_reference_frame_type_is_same(block_context, base_coordinates, reference_frame, list, true);
if (different_ref_found) {
for (auto i = 0u; i < MVREF_NEIGHBOURS; i++) {
MotionVector candidate = base_coordinates + mv_ref_blocks[block_context.size][i];
if (motion_vector_is_inside_tile(block_context.tile_context, candidate))
add_motion_vector_if_reference_frame_type_is_different(block_context, candidate, reference_frame, list, false);
}
}
if (block_context.frame_context.use_previous_frame_motion_vectors)
add_motion_vector_if_reference_frame_type_is_different(block_context, base_coordinates, reference_frame, list, true);
for (auto i = 0u; i < list.size(); i++) {
// clamp_mv_ref( i ) in the spec.
list[i] = clamp_motion_vector(block_context, list[i], MV_BORDER);
}
MotionVectorPair result;
for (auto i = 0u; i < list.size(); i++)
result[static_cast<ReferenceIndex>(i)] = list[i];
result.primary = clamp_motion_vector(block_context, result.primary, MV_BORDER);
result.secondary = clamp_motion_vector(block_context, result.secondary, MV_BORDER);
return result;
}
// find_best_ref_mvs( refList ) in the spec.
static void select_best_reference_motion_vectors(BlockContext& block_context, MotionVectorPair reference_motion_vectors, BlockMotionVectorCandidates& candidates, ReferenceIndex reference_index)
{
auto adjust_and_clamp_vector = [&](MotionVector& vector) {
auto delta_row = vector.row();
auto delta_column = vector.column();
if (!block_context.frame_context.high_precision_motion_vectors_allowed || !should_use_high_precision_motion_vector(vector)) {
if ((delta_row & 1) != 0)
delta_row += delta_row > 0 ? -1 : 1;
if ((delta_column & 1) != 0)
delta_column += delta_column > 0 ? -1 : 1;
}
vector = { delta_row, delta_column };
vector = clamp_motion_vector(block_context, vector, (BORDERINPIXELS - INTERP_EXTEND) << 3);
};
adjust_and_clamp_vector(reference_motion_vectors.primary);
adjust_and_clamp_vector(reference_motion_vectors.secondary);
candidates[reference_index].nearest_vector = reference_motion_vectors.primary;
candidates[reference_index].near_vector = reference_motion_vectors.secondary;
candidates[reference_index].best_vector = reference_motion_vectors.primary;
}
// append_sub8x8_mvs( block, refList ) in the spec.
void Parser::select_best_sub_block_reference_motion_vectors(BlockContext& block_context, BlockMotionVectorCandidates& candidates, i32 block, ReferenceIndex reference_index)
{
Array<MotionVector, 2> sub_8x8_mvs;
MotionVectorPair reference_motion_vectors = find_reference_motion_vectors(block_context, block_context.reference_frame_types[reference_index], block);
auto destination_index = 0;
if (block == 0) {
sub_8x8_mvs[destination_index++] = reference_motion_vectors.primary;
sub_8x8_mvs[destination_index++] = reference_motion_vectors.secondary;
} else if (block <= 2) {
sub_8x8_mvs[destination_index++] = block_context.sub_block_motion_vectors[0][reference_index];
} else {
sub_8x8_mvs[destination_index++] = block_context.sub_block_motion_vectors[2][reference_index];
for (auto index = 1; index >= 0 && destination_index < 2; index--) {
auto block_vector = block_context.sub_block_motion_vectors[index][reference_index];
if (block_vector != sub_8x8_mvs[0])
sub_8x8_mvs[destination_index++] = block_vector;
}
}
for (auto n = 0u; n < 2 && destination_index < 2; n++) {
auto ref_list_vector = reference_motion_vectors[static_cast<ReferenceIndex>(n)];
if (ref_list_vector != sub_8x8_mvs[0])
sub_8x8_mvs[destination_index++] = ref_list_vector;
}
if (destination_index < 2)
sub_8x8_mvs[destination_index++] = {};
candidates[reference_index].nearest_vector = sub_8x8_mvs[0];
candidates[reference_index].near_vector = sub_8x8_mvs[1];
}
}
|