summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibVideo/VP9/Decoder.cpp
blob: 9d9e739dc92053e7615da4f2884629fbf9145ea0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "Decoder.h"
#include "Utilities.h"

namespace Video::VP9 {

Decoder::Decoder()
    : m_parser(make<Parser>(*this))
{
}

bool Decoder::decode_frame(ByteBuffer const& frame_data)
{
    SAFE_CALL(m_parser->parse_frame(frame_data));
    // TODO:
    //  - #2
    //  - #3
    //  - #4
    SAFE_CALL(update_reference_frames());
    return true;
}

void Decoder::dump_frame_info()
{
    m_parser->dump_info();
}

u8 Decoder::merge_prob(u8 pre_prob, u8 count_0, u8 count_1, u8 count_sat, u8 max_update_factor)
{
    auto total_decode_count = count_0 + count_1;
    auto prob = (total_decode_count == 0) ? 128 : clip_3(1, 255, (count_0 * 256 + (total_decode_count >> 1)) / total_decode_count);
    auto count = min(total_decode_count, count_sat);
    auto factor = (max_update_factor * count) / count_sat;
    return round_2(pre_prob * (256 - factor) + (prob * factor), 8);
}

u8 Decoder::merge_probs(int const* tree, int index, u8* probs, u8* counts, u8 count_sat, u8 max_update_factor)
{
    auto s = tree[index];
    auto left_count = (s <= 0) ? counts[-s] : merge_probs(tree, s, probs, counts, count_sat, max_update_factor);
    auto r = tree[index + 1];
    auto right_count = (r <= 0) ? counts[-r] : merge_probs(tree, r, probs, counts, count_sat, max_update_factor);
    probs[index >> 1] = merge_prob(probs[index >> 1], left_count, right_count, count_sat, max_update_factor);
    return left_count + right_count;
}

bool Decoder::adapt_coef_probs()
{
    u8 update_factor;
    if (m_parser->m_frame_is_intra || m_parser->m_last_frame_type != KeyFrame)
        update_factor = 112;
    else
        update_factor = 128;

    for (size_t t = 0; t < 4; t++) {
        for (size_t i = 0; i < 2; i++) {
            for (size_t j = 0; j < 2; j++) {
                for (size_t k = 0; k < 6; k++) {
                    size_t max_l = (k == 0) ? 3 : 6;
                    for (size_t l = 0; l < max_l; l++) {
                        auto& coef_probs = m_parser->m_probability_tables->coef_probs()[t][i][j][k][l];
                        merge_probs(small_token_tree, 2, coef_probs,
                            m_parser->m_syntax_element_counter->m_counts_token[t][i][j][k][l],
                            24, update_factor);
                        merge_probs(binary_tree, 0, coef_probs,
                            m_parser->m_syntax_element_counter->m_counts_more_coefs[t][i][j][k][l],
                            24, update_factor);
                    }
                }
            }
        }
    }

    return true;
}

#define ADAPT_PROB_TABLE(name, size)                                     \
    do {                                                                 \
        for (size_t i = 0; i < (size); i++) {                            \
            auto table = probs.name##_prob();                            \
            table[i] = adapt_prob(table[i], counter.m_counts_##name[i]); \
        }                                                                \
    } while (0)

#define ADAPT_TREE(tree_name, prob_name, count_name, size)                                                 \
    do {                                                                                                   \
        for (size_t i = 0; i < (size); i++) {                                                              \
            adapt_probs(tree_name##_tree, probs.prob_name##_probs()[i], counter.m_counts_##count_name[i]); \
        }                                                                                                  \
    } while (0)

bool Decoder::adapt_non_coef_probs()
{
    auto& probs = *m_parser->m_probability_tables;
    auto& counter = *m_parser->m_syntax_element_counter;
    ADAPT_PROB_TABLE(is_inter, IS_INTER_CONTEXTS);
    ADAPT_PROB_TABLE(comp_mode, COMP_MODE_CONTEXTS);
    ADAPT_PROB_TABLE(comp_ref, REF_CONTEXTS);
    for (size_t i = 0; i < REF_CONTEXTS; i++) {
        for (size_t j = 0; j < 2; j++)
            probs.single_ref_prob()[i][j] = adapt_prob(probs.single_ref_prob()[i][j], counter.m_counts_single_ref[i][j]);
    }
    ADAPT_TREE(inter_mode, inter_mode, inter_mode, INTER_MODE_CONTEXTS);
    ADAPT_TREE(intra_mode, y_mode, intra_mode, INTER_MODE_CONTEXTS);
    ADAPT_TREE(intra_mode, uv_mode, uv_mode, INTER_MODE_CONTEXTS);
    ADAPT_TREE(partition, partition, partition, INTER_MODE_CONTEXTS);
    ADAPT_PROB_TABLE(skip, SKIP_CONTEXTS);
    if (m_parser->m_interpolation_filter == Switchable) {
        ADAPT_TREE(interp_filter, interp_filter, interp_filter, INTERP_FILTER_CONTEXTS);
    }
    if (m_parser->m_tx_mode == TXModeSelect) {
        for (size_t i = 0; i < TX_SIZE_CONTEXTS; i++) {
            auto& tx_probs = probs.tx_probs();
            auto& tx_counts = counter.m_counts_tx_size;
            adapt_probs(tx_size_8_tree, tx_probs[TX_8x8][i], tx_counts[TX_8x8][i]);
            adapt_probs(tx_size_16_tree, tx_probs[TX_16x16][i], tx_counts[TX_16x16][i]);
            adapt_probs(tx_size_32_tree, tx_probs[TX_32x32][i], tx_counts[TX_32x32][i]);
        }
    }
    adapt_probs(mv_joint_tree, probs.mv_joint_probs(), counter.m_counts_mv_joint);
    for (size_t i = 0; i < 2; i++) {
        probs.mv_sign_prob()[i] = adapt_prob(probs.mv_sign_prob()[i], counter.m_counts_mv_sign[i]);
        adapt_probs(mv_class_tree, probs.mv_class_probs()[i], counter.m_counts_mv_class[i]);
        probs.mv_class0_bit_prob()[i] = adapt_prob(probs.mv_class0_bit_prob()[i], counter.m_counts_mv_class0_bit[i]);
        for (size_t j = 0; j < MV_OFFSET_BITS; j++)
            probs.mv_bits_prob()[i][j] = adapt_prob(probs.mv_bits_prob()[i][j], counter.m_counts_mv_bits[i][j]);
        for (size_t j = 0; j < CLASS0_SIZE; j++)
            adapt_probs(mv_fr_tree, probs.mv_class0_fr_probs()[i][j], counter.m_counts_mv_class0_fr[i][j]);
        adapt_probs(mv_fr_tree, probs.mv_fr_probs()[i], counter.m_counts_mv_fr[i]);
        if (m_parser->m_allow_high_precision_mv) {
            probs.mv_class0_hp_prob()[i] = adapt_prob(probs.mv_class0_hp_prob()[i], counter.m_counts_mv_class0_hp[i]);
            probs.mv_hp_prob()[i] = adapt_prob(probs.mv_hp_prob()[i], counter.m_counts_mv_hp[i]);
        }
    }
    return true;
}

void Decoder::adapt_probs(int const* tree, u8* probs, u8* counts)
{
    merge_probs(tree, 0, probs, counts, COUNT_SAT, MAX_UPDATE_FACTOR);
}

u8 Decoder::adapt_prob(u8 prob, u8 counts[2])
{
    return merge_prob(prob, counts[0], counts[1], COUNT_SAT, MAX_UPDATE_FACTOR);
}

bool Decoder::predict_intra(size_t, u32, u32, bool, bool, bool, TXSize, u32)
{
    // TODO: Implement
    return true;
}

bool Decoder::predict_inter(size_t, u32, u32, u32, u32, u32)
{
    // TODO: Implement
    return true;
}

bool Decoder::reconstruct(size_t, u32, u32, TXSize)
{
    // TODO: Implement
    return true;
}

bool Decoder::update_reference_frames()
{
    for (auto i = 0; i < NUM_REF_FRAMES; i++) {
        dbgln("updating frame {}? {}", i, (m_parser->m_refresh_frame_flags & (1 << i)) == 1);
        if ((m_parser->m_refresh_frame_flags & (1 << i)) != 1)
            continue;
        m_parser->m_ref_frame_width[i] = m_parser->m_frame_width;
        m_parser->m_ref_frame_height[i] = m_parser->m_frame_height;
        // TODO: 1.3-1.7
    }
    // TODO: 2.1-2.2
    return true;
}

}