1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Base64.h>
#include <AK/Debug.h>
#include <AK/Endian.h>
#include <LibCore/ConfigFile.h>
#include <LibCore/DateTime.h>
#include <LibCore/File.h>
#include <LibCore/Timer.h>
#include <LibCrypto/ASN1/ASN1.h>
#include <LibCrypto/ASN1/PEM.h>
#include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>
#include <LibCrypto/PK/Code/EMSA_PSS.h>
#include <LibTLS/TLSv12.h>
#include <errno.h>
#ifndef SOCK_NONBLOCK
# include <sys/ioctl.h>
#endif
namespace TLS {
void TLSv12::consume(ReadonlyBytes record)
{
if (m_context.critical_error) {
dbgln("There has been a critical error ({}), refusing to continue", (i8)m_context.critical_error);
return;
}
if (record.size() == 0) {
return;
}
dbgln_if(TLS_DEBUG, "Consuming {} bytes", record.size());
if (m_context.message_buffer.try_append(record).is_error()) {
dbgln("Not enough space in message buffer, dropping the record");
return;
}
size_t index { 0 };
size_t buffer_length = m_context.message_buffer.size();
size_t size_offset { 3 }; // read the common record header
size_t header_size { 5 };
dbgln_if(TLS_DEBUG, "message buffer length {}", buffer_length);
while (buffer_length >= 5) {
auto length = AK::convert_between_host_and_network_endian(ByteReader::load16(m_context.message_buffer.offset_pointer(index + size_offset))) + header_size;
if (length > buffer_length) {
dbgln_if(TLS_DEBUG, "Need more data: {} > {}", length, buffer_length);
break;
}
auto consumed = handle_message(m_context.message_buffer.bytes().slice(index, length));
if constexpr (TLS_DEBUG) {
if (consumed > 0)
dbgln("consumed {} bytes", consumed);
else
dbgln("error: {}", consumed);
}
if (consumed != (i8)Error::NeedMoreData) {
if (consumed < 0) {
dbgln("Consumed an error: {}", consumed);
if (!m_context.critical_error)
m_context.critical_error = (i8)consumed;
m_context.error_code = (Error)consumed;
break;
}
} else {
continue;
}
index += length;
buffer_length -= length;
if (m_context.critical_error) {
dbgln("Broken connection");
m_context.error_code = Error::BrokenConnection;
break;
}
}
if (m_context.error_code != Error::NoError && m_context.error_code != Error::NeedMoreData) {
dbgln("consume error: {}", (i8)m_context.error_code);
m_context.message_buffer.clear();
return;
}
if (index) {
m_context.message_buffer = m_context.message_buffer.slice(index, m_context.message_buffer.size() - index);
}
}
bool Certificate::is_valid() const
{
auto now = Core::DateTime::now();
if (now < not_before) {
dbgln("certificate expired (not yet valid, signed for {})", not_before.to_string());
return false;
}
if (not_after < now) {
dbgln("certificate expired (expiry date {})", not_after.to_string());
return false;
}
return true;
}
void TLSv12::try_disambiguate_error() const
{
dbgln("Possible failure cause(s): ");
switch ((AlertDescription)m_context.critical_error) {
case AlertDescription::HandshakeFailure:
if (!m_context.cipher_spec_set) {
dbgln("- No cipher suite in common with {}", m_context.extensions.SNI);
} else {
dbgln("- Unknown internal issue");
}
break;
case AlertDescription::InsufficientSecurity:
dbgln("- No cipher suite in common with {} (the server is oh so secure)", m_context.extensions.SNI);
break;
case AlertDescription::ProtocolVersion:
dbgln("- The server refused to negotiate with TLS 1.2 :(");
break;
case AlertDescription::UnexpectedMessage:
dbgln("- We sent an invalid message for the state we're in.");
break;
case AlertDescription::BadRecordMAC:
dbgln("- Bad MAC record from our side.");
dbgln("- Ciphertext wasn't an even multiple of the block length.");
dbgln("- Bad block cipher padding.");
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
break;
case AlertDescription::RecordOverflow:
dbgln("- Sent a ciphertext record which has a length bigger than 18432 bytes.");
dbgln("- Sent record decrypted to a compressed record that has a length bigger than 18432 bytes.");
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
break;
case AlertDescription::DecompressionFailure:
dbgln("- We sent invalid input for decompression (e.g. data that would expand to excessive length)");
break;
case AlertDescription::IllegalParameter:
dbgln("- We sent a parameter in the handshake that is out of range or inconsistent with the other parameters.");
break;
case AlertDescription::DecodeError:
dbgln("- The message we sent cannot be decoded because a field was out of range or the length was incorrect.");
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
break;
case AlertDescription::DecryptError:
dbgln("- A handshake crypto operation failed. This includes signature verification and validating Finished.");
break;
case AlertDescription::AccessDenied:
dbgln("- The certificate is valid, but once access control was applied, the sender decided to stop negotiation.");
break;
case AlertDescription::InternalError:
dbgln("- No one knows, but it isn't a protocol failure.");
break;
case AlertDescription::DecryptionFailed:
case AlertDescription::NoCertificate:
case AlertDescription::ExportRestriction:
dbgln("- No one knows, the server sent a non-compliant alert.");
break;
default:
dbgln("- No one knows.");
break;
}
}
void TLSv12::set_root_certificates(Vector<Certificate> certificates)
{
if (!m_context.root_certificates.is_empty()) {
dbgln("TLS warn: resetting root certificates!");
m_context.root_certificates.clear();
}
for (auto& cert : certificates) {
if (!cert.is_valid())
dbgln("Certificate for {} by {} is invalid, things may or may not work!", cert.subject.subject, cert.issuer.subject);
// FIXME: Figure out what we should do when our root certs are invalid.
m_context.root_certificates.set(cert.subject_identifier_string(), cert);
}
dbgln_if(TLS_DEBUG, "{}: Set {} root certificates", this, m_context.root_certificates.size());
}
bool Context::verify_chain() const
{
if (!options.validate_certificates)
return true;
Vector<Certificate> const* local_chain = nullptr;
if (is_server) {
dbgln("Unsupported: Server mode");
TODO();
} else {
local_chain = &certificates;
}
if (local_chain->is_empty()) {
dbgln("verify_chain: Attempting to verify an empty chain");
return false;
}
for (size_t cert_index = 0; cert_index < local_chain->size(); ++cert_index) {
auto cert = local_chain->at(cert_index);
auto subject_string = cert.subject_identifier_string();
auto issuer_string = cert.issuer_identifier_string();
if (!cert.is_valid()) {
dbgln("verify_chain: Certificate is not valid {}", subject_string);
return false;
}
auto maybe_root_certificate = root_certificates.get(issuer_string);
if (maybe_root_certificate.has_value()) {
auto root_certificate = maybe_root_certificate.release_value();
auto verification_correct = verify_certificate_pair(cert, root_certificate);
if (!verification_correct) {
dbgln("verify_chain: Signature inconsistent, {} was not signed by {} (root certificate)", subject_string, issuer_string);
return false;
}
// Root certificate reached, and correctly verified, so we can stop now
return true;
} else {
if (subject_string == issuer_string) {
dbgln("verify_chain: Non-root self-signed certificate");
return false;
}
if ((cert_index + 1) >= local_chain->size()) {
dbgln("verify_chain: No trusted root certificate found before end of certificate chain");
dbgln("verify_chain: Last certificate in chain was signed by {}", issuer_string);
return false;
}
auto parent_certificate = local_chain->at(cert_index + 1);
if (issuer_string != parent_certificate.subject_identifier_string()) {
dbgln("verify_chain: Next certificate in the chain is not the issuer of this certificate");
return false;
}
bool verification_correct = verify_certificate_pair(cert, parent_certificate);
if (!verification_correct) {
dbgln("verify_chain: Signature inconsistent, {} was not signed by {}", subject_string, issuer_string);
return false;
}
}
}
// Either a root certificate is reached, or parent validation fails as the end of the local chain is reached
VERIFY_NOT_REACHED();
}
bool Context::verify_certificate_pair(Certificate& subject, Certificate& issuer) const
{
Crypto::Hash::HashKind kind;
switch (subject.signature_algorithm) {
case CertificateKeyAlgorithm::RSA_SHA1:
kind = Crypto::Hash::HashKind::SHA1;
break;
case CertificateKeyAlgorithm::RSA_SHA256:
kind = Crypto::Hash::HashKind::SHA256;
break;
case CertificateKeyAlgorithm::RSA_SHA384:
kind = Crypto::Hash::HashKind::SHA384;
break;
case CertificateKeyAlgorithm::RSA_SHA512:
kind = Crypto::Hash::HashKind::SHA512;
break;
default:
dbgln("verify_certificate_pair: Unknown signature algorithm, expected RSA with SHA1/256/384/512, got {}", (u8)subject.signature_algorithm);
return false;
}
Crypto::PK::RSAPrivateKey dummy_private_key;
auto rsa = Crypto::PK::RSA(issuer.public_key, dummy_private_key);
auto verification_buffer_result = ByteBuffer::create_uninitialized(subject.signature_value.size());
if (verification_buffer_result.is_error()) {
dbgln("verify_certificate_pair: Unable to allocate buffer for verification");
return false;
}
auto verification_buffer = verification_buffer_result.release_value();
auto verification_buffer_bytes = verification_buffer.bytes();
rsa.verify(subject.signature_value, verification_buffer_bytes);
// FIXME: This slice is subject hack, this will work for most certificates, but you actually have to parse
// the ASN.1 data to correctly extract the signed part of the certificate.
ReadonlyBytes message = subject.original_asn1.bytes().slice(4, subject.original_asn1.size() - 4 - (5 + subject.signature_value.size()) - 15);
auto pkcs1 = Crypto::PK::EMSA_PKCS1_V1_5<Crypto::Hash::Manager>(kind);
auto verification = pkcs1.verify(message, verification_buffer_bytes, subject.signature_value.size() * 8);
return verification == Crypto::VerificationConsistency::Consistent;
}
template<typename HMACType>
static void hmac_pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b)
{
if (!secret.size()) {
dbgln("null secret");
return;
}
auto append_label_seed = [&](auto& hmac) {
hmac.update(label, label_length);
hmac.update(seed);
if (seed_b.size() > 0)
hmac.update(seed_b);
};
HMACType hmac(secret);
append_label_seed(hmac);
constexpr auto digest_size = hmac.digest_size();
u8 digest[digest_size];
auto digest_0 = Bytes { digest, digest_size };
digest_0.overwrite(0, hmac.digest().immutable_data(), digest_size);
size_t index = 0;
while (index < output.size()) {
hmac.update(digest_0);
append_label_seed(hmac);
auto digest_1 = hmac.digest();
auto copy_size = min(digest_size, output.size() - index);
output.overwrite(index, digest_1.immutable_data(), copy_size);
index += copy_size;
digest_0.overwrite(0, hmac.process(digest_0).immutable_data(), digest_size);
}
}
void TLSv12::pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b)
{
// Simplification: We only support the HMAC PRF with the hash function SHA-256 or stronger.
// RFC 5246: "In this section, we define one PRF, based on HMAC. This PRF with the
// SHA-256 hash function is used for all cipher suites defined in this
// document and in TLS documents published prior to this document when
// TLS 1.2 is negotiated. New cipher suites MUST explicitly specify a
// PRF and, in general, SHOULD use the TLS PRF with SHA-256 or a
// stronger standard hash function."
switch (hmac_hash()) {
case Crypto::Hash::HashKind::SHA512:
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA512>>(output, secret, label, label_length, seed, seed_b);
break;
case Crypto::Hash::HashKind::SHA384:
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA384>>(output, secret, label, label_length, seed, seed_b);
break;
case Crypto::Hash::HashKind::SHA256:
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA256>>(output, secret, label, label_length, seed, seed_b);
break;
default:
dbgln("Failed to find a suitable HMAC hash");
VERIFY_NOT_REACHED();
break;
}
}
TLSv12::TLSv12(StreamVariantType stream, Options options)
: m_stream(move(stream))
{
m_context.options = move(options);
m_context.is_server = false;
m_context.tls_buffer = {};
set_root_certificates(m_context.options.root_certificates.has_value()
? *m_context.options.root_certificates
: DefaultRootCACertificates::the().certificates());
setup_connection();
}
Vector<Certificate> TLSv12::parse_pem_certificate(ReadonlyBytes certificate_pem_buffer, ReadonlyBytes rsa_key) // FIXME: This should not be bound to RSA
{
if (certificate_pem_buffer.is_empty() || rsa_key.is_empty()) {
return {};
}
auto decoded_certificate = Crypto::decode_pem(certificate_pem_buffer);
if (decoded_certificate.is_empty()) {
dbgln("Certificate not PEM");
return {};
}
auto maybe_certificate = Certificate::parse_asn1(decoded_certificate);
if (!maybe_certificate.has_value()) {
dbgln("Invalid certificate");
return {};
}
Crypto::PK::RSA rsa(rsa_key);
auto certificate = maybe_certificate.release_value();
certificate.private_key = rsa.private_key();
return { move(certificate) };
}
Singleton<DefaultRootCACertificates> DefaultRootCACertificates::s_the;
DefaultRootCACertificates::DefaultRootCACertificates()
{
// FIXME: This might not be the best format, find a better way to represent CA certificates.
auto config_result = Core::ConfigFile::open_for_system("ca_certs");
if (config_result.is_error()) {
dbgln("Failed to load CA Certificates: {}", config_result.error());
return;
}
auto config = config_result.release_value();
for (auto& entity : config->groups()) {
for (auto& subject : config->keys(entity)) {
auto certificate_base64 = config->read_entry(entity, subject);
auto certificate_data_result = decode_base64(certificate_base64);
if (certificate_data_result.is_error()) {
dbgln("Skipping CA Certificate {} {}: out of memory", entity, subject);
continue;
}
auto certificate_data = certificate_data_result.release_value();
auto certificate_result = Certificate::parse_asn1(certificate_data.bytes());
// If the certificate does not parse it is likely using elliptic curve keys/signatures, which are not
// supported right now. Currently, ca_certs.ini should only contain certificates with RSA keys/signatures.
if (!certificate_result.has_value()) {
dbgln("Skipping CA Certificate {} {}: unable to parse", entity, subject);
continue;
}
auto certificate = certificate_result.release_value();
m_ca_certificates.append(move(certificate));
}
}
dbgln("Loaded {} CA Certificates", m_ca_certificates.size());
}
}
|