1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Array.h>
#include <AK/Checked.h>
#include <AK/JsonArray.h>
#include <AK/JsonObject.h>
#include <AK/JsonValue.h>
#include <AK/LexicalPath.h>
#include <AK/MappedFile.h>
#include <LibCore/File.h>
#include <LibDebug/DebugInfo.h>
#include <LibSymbolication/Symbolication.h>
namespace Symbolication {
struct CachedELF {
NonnullRefPtr<MappedFile> mapped_file;
NonnullOwnPtr<Debug::DebugInfo> debug_info;
NonnullOwnPtr<ELF::Image> image;
};
static HashMap<String, OwnPtr<CachedELF>> s_cache;
enum class KernelBaseState {
Uninitialized,
Valid,
Invalid,
};
static FlatPtr s_kernel_base;
static KernelBaseState s_kernel_base_state = KernelBaseState::Uninitialized;
Optional<FlatPtr> kernel_base()
{
if (s_kernel_base_state == KernelBaseState::Uninitialized) {
auto file = Core::File::open("/proc/kernel_base", Core::OpenMode::ReadOnly);
if (file.is_error()) {
s_kernel_base_state = KernelBaseState::Invalid;
return {};
}
auto kernel_base_str = String { file.value()->read_all(), NoChomp };
#if ARCH(I386)
using AddressType = u32;
#else
using AddressType = u64;
#endif
auto maybe_kernel_base = kernel_base_str.to_uint<AddressType>();
if (!maybe_kernel_base.has_value()) {
s_kernel_base_state = KernelBaseState::Invalid;
return {};
}
s_kernel_base = maybe_kernel_base.value();
s_kernel_base_state = KernelBaseState::Valid;
}
if (s_kernel_base_state == KernelBaseState::Invalid)
return {};
return s_kernel_base;
}
Optional<Symbol> symbolicate(String const& path, FlatPtr address, IncludeSourcePosition include_source_positions)
{
String full_path = path;
if (!path.starts_with('/')) {
Array<StringView, 2> search_paths { "/usr/lib"sv, "/usr/local/lib"sv };
bool found = false;
for (auto& search_path : search_paths) {
full_path = LexicalPath::join(search_path, path).string();
if (Core::File::exists(full_path)) {
found = true;
break;
}
}
if (!found) {
dbgln("Failed to find candidate for {}", path);
s_cache.set(path, {});
return {};
}
}
if (!s_cache.contains(full_path)) {
auto mapped_file = MappedFile::map(full_path);
if (mapped_file.is_error()) {
dbgln("Failed to map {}: {}", full_path, mapped_file.error());
s_cache.set(full_path, {});
return {};
}
auto elf = make<ELF::Image>(mapped_file.value()->bytes());
if (!elf->is_valid()) {
dbgln("ELF not valid: {}", full_path);
s_cache.set(full_path, {});
return {};
}
auto cached_elf = make<CachedELF>(mapped_file.release_value(), make<Debug::DebugInfo>(*elf), move(elf));
s_cache.set(full_path, move(cached_elf));
}
auto it = s_cache.find(full_path);
VERIFY(it != s_cache.end());
auto& cached_elf = it->value;
if (!cached_elf)
return {};
u32 offset = 0;
auto symbol = cached_elf->debug_info->elf().symbolicate(address, &offset);
Vector<Debug::DebugInfo::SourcePosition> positions;
if (include_source_positions == IncludeSourcePosition::Yes) {
auto source_position_with_inlines = cached_elf->debug_info->get_source_position_with_inlines(address);
for (auto& position : source_position_with_inlines.inline_chain) {
if (!positions.contains_slow(position))
positions.append(position);
}
if (source_position_with_inlines.source_position.has_value() && !positions.contains_slow(source_position_with_inlines.source_position.value())) {
positions.insert(0, source_position_with_inlines.source_position.value());
}
}
return Symbol {
.address = address,
.name = move(symbol),
.object = LexicalPath::basename(path),
.offset = offset,
.source_positions = move(positions),
};
}
Vector<Symbol> symbolicate_thread(pid_t pid, pid_t tid, IncludeSourcePosition include_source_positions)
{
struct RegionWithSymbols {
FlatPtr base { 0 };
size_t size { 0 };
String path;
};
Vector<FlatPtr> stack;
Vector<RegionWithSymbols> regions;
if (auto maybe_kernel_base = kernel_base(); maybe_kernel_base.has_value()) {
regions.append(RegionWithSymbols {
.base = maybe_kernel_base.value(),
.size = 0x3fffffff,
.path = "/boot/Kernel.debug",
});
}
{
auto stack_path = String::formatted("/proc/{}/stacks/{}", pid, tid);
auto file_or_error = Core::File::open(stack_path, Core::OpenMode::ReadOnly);
if (file_or_error.is_error()) {
warnln("Could not open {}: {}", stack_path, file_or_error.error());
return {};
}
auto json = JsonValue::from_string(file_or_error.value()->read_all());
if (json.is_error() || !json.value().is_array()) {
warnln("Invalid contents in {}", stack_path);
return {};
}
stack.ensure_capacity(json.value().as_array().size());
for (auto& value : json.value().as_array().values()) {
stack.append(value.to_addr());
}
}
{
auto vm_path = String::formatted("/proc/{}/vm", pid);
auto file_or_error = Core::File::open(vm_path, Core::OpenMode::ReadOnly);
if (file_or_error.is_error()) {
warnln("Could not open {}: {}", vm_path, file_or_error.error());
return {};
}
auto json = JsonValue::from_string(file_or_error.value()->read_all());
if (json.is_error() || !json.value().is_array()) {
warnln("Invalid contents in {}", vm_path);
return {};
}
for (auto& region_value : json.value().as_array().values()) {
auto& region = region_value.as_object();
auto name = region.get("name").to_string();
auto address = region.get("address").to_addr();
auto size = region.get("size").to_addr();
String path;
if (name == "/usr/lib/Loader.so") {
path = name;
} else if (name.ends_with(": .text") || name.ends_with(": .rodata")) {
auto parts = name.split_view(':');
path = parts[0];
} else {
continue;
}
RegionWithSymbols r;
r.base = address;
r.size = size;
r.path = path;
regions.append(move(r));
}
}
Vector<Symbol> symbols;
bool first_frame = true;
for (auto address : stack) {
const RegionWithSymbols* found_region = nullptr;
for (auto& region : regions) {
FlatPtr region_end;
if (Checked<FlatPtr>::addition_would_overflow(region.base, region.size))
region_end = NumericLimits<FlatPtr>::max();
else
region_end = region.base + region.size;
if (address >= region.base && address < region_end) {
found_region = ®ion;
break;
}
}
if (!found_region) {
outln("{:p} ??", address);
continue;
}
// We found an address inside of a region, but the base of that region
// may not be the base of the ELF image. For example, there could be an
// .rodata mapping at a lower address than the first .text mapping from
// the same image. look for the lowest address region with the same path.
RegionWithSymbols const* base_region = nullptr;
for (auto& region : regions) {
if (region.path != found_region->path)
continue;
if (!base_region || region.base <= base_region->base)
base_region = ®ion;
}
FlatPtr adjusted_address = address - base_region->base;
// We're subtracting 1 from the address because this is the return address,
// i.e. it is one instruction past the call instruction.
// However, because the first frame represents the current
// instruction pointer rather than the return address we don't
// subtract 1 for that.
auto result = symbolicate(found_region->path, adjusted_address - (first_frame ? 0 : 1), include_source_positions);
first_frame = false;
if (!result.has_value()) {
symbols.append(Symbol {
.address = address,
.source_positions = {},
});
continue;
}
symbols.append(result.value());
}
return symbols;
}
}
|