summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibSoftGPU/PixelConverter.cpp
blob: a4e4bcc0cea16d47fd87fdea920e090b96d38ca6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
 * Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Array.h>
#include <AK/Error.h>
#include <AK/FloatingPoint.h>
#include <LibSoftGPU/PixelConverter.h>

namespace SoftGPU {

template<typename T>
static constexpr T reverse_component_bytes_if_needed(T value, GPU::ImageDataLayout const& image_data_layout)
requires(sizeof(T) == 2 || sizeof(T) == 4)
{
    if (image_data_layout.packing.component_bytes_order == GPU::ComponentBytesOrder::Normal)
        return value;
    VERIFY(image_data_layout.pixel_type.bits == GPU::PixelComponentBits::AllBits);

    auto* u8_ptr = reinterpret_cast<u8*>(&value);
    if constexpr (sizeof(T) == 2) {
        swap(u8_ptr[0], u8_ptr[1]);
    } else if constexpr (sizeof(T) == 4) {
        swap(u8_ptr[0], u8_ptr[3]);
        swap(u8_ptr[1], u8_ptr[2]);
    }
    return value;
}

static constexpr FloatVector4 decode_component_order_for_format(FloatVector4 const& components, GPU::PixelFormat format)
{
    switch (format) {
    case GPU::PixelFormat::Alpha:
        return { 0.f, 0.f, 0.f, components[0] };
    case GPU::PixelFormat::BGR:
        return { components[2], components[1], components[0], 1.f };
    case GPU::PixelFormat::BGRA:
        return { components[2], components[1], components[0], components[3] };
    case GPU::PixelFormat::Blue:
        return { 0.f, 0.f, components[0], 1.f };
    case GPU::PixelFormat::ColorIndex:
    case GPU::PixelFormat::DepthComponent:
    case GPU::PixelFormat::StencilIndex:
        return { components[0], 0.f, 0.f, 0.f };
    case GPU::PixelFormat::Green:
        return { 0.f, components[0], 0.f, 1.f };
    case GPU::PixelFormat::Intensity:
        return { components[0], components[0], components[0], components[0] };
    case GPU::PixelFormat::Luminance:
        return { components[0], components[0], components[0], 1.f };
    case GPU::PixelFormat::LuminanceAlpha:
        return { components[0], components[0], components[0], components[1] };
    case GPU::PixelFormat::Red:
        return { components[0], 0.f, 0.f, 1.f };
    case GPU::PixelFormat::RGB:
        return { components[0], components[1], components[2], 1.f };
    case GPU::PixelFormat::RGBA:
        return components;
    }
    VERIFY_NOT_REACHED();
}

static constexpr FloatVector4 encode_component_order_for_format(FloatVector4 const& components, GPU::PixelFormat format)
{
    switch (format) {
    case GPU::PixelFormat::Alpha:
        return { components[3], 0.f, 0.f, 0.f };
    case GPU::PixelFormat::BGR:
        return { components[2], components[1], components[0], 0.f };
    case GPU::PixelFormat::BGRA:
        return { components[2], components[1], components[0], components[3] };
    case GPU::PixelFormat::Blue:
        return { components[2], 0.f, 0.f, 0.f };
    case GPU::PixelFormat::ColorIndex:
    case GPU::PixelFormat::DepthComponent:
    case GPU::PixelFormat::Intensity:
    case GPU::PixelFormat::Luminance:
    case GPU::PixelFormat::Red:
    case GPU::PixelFormat::RGB:
    case GPU::PixelFormat::RGBA:
    case GPU::PixelFormat::StencilIndex:
        return components;
    case GPU::PixelFormat::Green:
        return { components[1], 0.f, 0.f, 0.f };
    case GPU::PixelFormat::LuminanceAlpha:
        return { components[0], components[3], 0.f, 0.f };
    }
    VERIFY_NOT_REACHED();
}

template<typename S, typename O>
static int read_pixel_values(u8 const* input_data, Array<O, 4>& output_values, GPU::ImageDataLayout const& layout)
{
    auto const& pixel_type = layout.pixel_type;
    auto const number_of_data_reads = GPU::number_of_components(pixel_type.format) / GPU::number_of_components(pixel_type.bits);

    for (int i = 0; i < number_of_data_reads; ++i) {
        auto storage_value = reinterpret_cast<S const*>(input_data)[i];
        if (layout.pixel_type.bits == GPU::PixelComponentBits::AllBits) {
            if constexpr (sizeof(S) == 2 || sizeof(S) == 4)
                storage_value = reverse_component_bytes_if_needed(storage_value, layout);
        }
        O value = storage_value;

        // Special case: convert HalfFloat to regular float
        if constexpr (IsSame<O, float>) {
            if (pixel_type.data_type == GPU::PixelDataType::HalfFloat)
                value = convert_to_native_float(FloatingPointBits<1, 5, 10>(storage_value));
        }

        output_values[i] = value;
    }
    return number_of_data_reads;
}

template<typename T>
constexpr FloatVector4 extract_component_values(Span<T> data_values, GPU::PixelType const& pixel_type)
{
    // FIXME: implement fixed point conversion for ::StencilIndex
    // FIXME: stencil components should account for GL_MAP_STENCIL
    // FIXME: stencil components should get GL_INDEX_SHIFT and GL_INDEX_OFFSET applied
    // FIXME: depth components should get GL_DEPTH_SCALE and GL_DEPTH_BIAS applied
    // FIXME: color components should get GL_C_SCALE and GL_C_BIAS applied

    auto const number_of_values = data_values.size();
    auto const bits_number_of_components = number_of_components(pixel_type.bits);
    VERIFY(bits_number_of_components == 1 || bits_number_of_components == number_of_components(pixel_type.format));

    // Maps a signed value to -1.0f..1.0f
    auto signed_to_float = [](T value) -> float {
        auto constexpr number_of_bits = sizeof(T) * 8 - 1;
        return max(static_cast<float>(value / static_cast<float>(1 << number_of_bits)), -1.f);
    };

    // Maps an unsigned value to 0.0f..1.0f
    auto unsigned_to_float = [](T value, u8 const number_of_bits) -> float {
        return static_cast<float>(value / static_cast<double>((1ull << number_of_bits) - 1));
    };

    // Handle full data values (1 or more)
    if (pixel_type.bits == GPU::PixelComponentBits::AllBits) {
        FloatVector4 components;
        for (size_t i = 0; i < number_of_values; ++i) {
            if constexpr (IsSigned<T>)
                components[i] = signed_to_float(data_values[i]);
            else
                components[i] = unsigned_to_float(data_values[i], sizeof(T) * 8);
        }
        return components;
    }

    VERIFY(number_of_values == 1);
    T const value = data_values[0];
    auto bitfields = pixel_component_bitfield_lengths(pixel_type.bits);

    // Map arbitrary bitfields to floats
    u8 remaining_width = 0;
    for (auto bitwidth : bitfields)
        remaining_width += bitwidth;

    // "By default the components are laid out from msb (most-significant bit) to lsb (least-significant bit)"
    FloatVector4 components;
    for (auto i = 0; i < 4; ++i) {
        auto bitwidth = bitfields[i];
        if (bitwidth == 0)
            break;
        remaining_width -= bitwidth;
        components[i] = unsigned_to_float((value >> remaining_width) & ((1 << bitwidth) - 1), bitwidth);
    }
    return components;
}

template<>
constexpr FloatVector4 extract_component_values(Span<float> data_values, GPU::PixelType const&)
{
    FloatVector4 components;
    for (size_t i = 0; i < data_values.size(); ++i)
        components[i] = data_values[i];
    return components;
}

template<typename T>
static FloatVector4 pixel_values_to_components(Span<T> values, GPU::PixelType const& pixel_type)
{
    // Deconstruct read value(s) into separate components
    auto components = extract_component_values(values, pixel_type);
    if (pixel_type.components_order == GPU::ComponentsOrder::Reversed)
        components = { components[3], components[2], components[1], components[0] };

    // Reconstruct component values in order
    auto component_values = decode_component_order_for_format(components, pixel_type.format);
    component_values.clamp(0.f, 1.f);
    return component_values;
}

FloatVector4 PixelConverter::read_pixel(u8 const** input_data)
{
    auto read_components = [&]<typename S, typename O>() {
        Array<O, 4> values;
        auto number_of_values = read_pixel_values<S, O>(*input_data, values, m_input_specification);
        *input_data += number_of_values * sizeof(O);
        return pixel_values_to_components(values.span().trim(number_of_values), m_input_specification.pixel_type);
    };
    switch (m_input_specification.pixel_type.data_type) {
    case GPU::PixelDataType::Bitmap:
        VERIFY_NOT_REACHED();
    case GPU::PixelDataType::Byte:
        return read_components.template operator()<i8, i8>();
    case GPU::PixelDataType::Float:
        return read_components.template operator()<float, float>();
    case GPU::PixelDataType::HalfFloat:
        return read_components.template operator()<u16, float>();
    case GPU::PixelDataType::Int:
        return read_components.template operator()<i32, i32>();
    case GPU::PixelDataType::Short:
        return read_components.template operator()<i16, i16>();
    case GPU::PixelDataType::UnsignedByte:
        return read_components.template operator()<u8, u8>();
    case GPU::PixelDataType::UnsignedInt:
        return read_components.template operator()<u32, u32>();
    case GPU::PixelDataType::UnsignedShort:
        return read_components.template operator()<u16, u16>();
    }
    VERIFY_NOT_REACHED();
}

static constexpr void write_pixel_as_type(u8** output_data, float value, GPU::ImageDataLayout layout)
{
    auto write_value = [&output_data, &layout]<typename T>(T value) -> void {
        if constexpr (sizeof(T) == 2 || sizeof(T) == 4)
            value = reverse_component_bytes_if_needed(value, layout);
        **reinterpret_cast<T**>(output_data) = value;
        (*output_data) += sizeof(T);
    };
    auto constexpr float_to_signed = []<typename T>(float value) -> T {
        auto const signed_max = 1ull << (sizeof(T) * 8 - 1);
        auto const unsigned_max = 2 * signed_max - 1;
        return round_to<T>((static_cast<double>(value) + 1.) / 2. * unsigned_max - signed_max);
    };
    auto constexpr float_to_unsigned = []<typename T>(float value) -> T {
        auto const unsigned_max = (1ull << (sizeof(T) * 8)) - 1;
        return round_to<T>(static_cast<double>(value) * unsigned_max);
    };
    switch (layout.pixel_type.data_type) {
    case GPU::PixelDataType::Bitmap:
        VERIFY_NOT_REACHED();
    case GPU::PixelDataType::Byte:
        write_value(float_to_signed.operator()<i8>(value));
        break;
    case GPU::PixelDataType::Float:
        write_value(value);
        break;
    case GPU::PixelDataType::HalfFloat:
        write_value(static_cast<u16>(convert_from_native_float<FloatingPointBits<1, 5, 10>>(value).bits()));
        break;
    case GPU::PixelDataType::Int:
        write_value(float_to_signed.operator()<i32>(value));
        break;
    case GPU::PixelDataType::Short:
        write_value(float_to_signed.operator()<i16>(value));
        break;
    case GPU::PixelDataType::UnsignedByte:
        write_value(float_to_unsigned.operator()<u8>(value));
        break;
    case GPU::PixelDataType::UnsignedInt:
        write_value(float_to_unsigned.operator()<u32>(value));
        break;
    case GPU::PixelDataType::UnsignedShort:
        write_value(float_to_unsigned.operator()<u16>(value));
        break;
    }
}

void constexpr write_pixel_as_bitfield(u8** output_data, FloatVector4 const& components, GPU::PixelType const& pixel_type)
{
    auto constexpr float_to_unsigned = [](float value, u8 bits) {
        auto unsigned_max = (1ull << bits) - 1;
        return round_to<u64>(value * unsigned_max);
    };

    // Construct value with concatenated bitfields - first component has most significant bits
    auto bitfields = pixel_component_bitfield_lengths(pixel_type.bits);
    u64 value = 0;
    u8 bitsize = 0;
    for (auto i = 0; i < 4; ++i) {
        value <<= bitsize;
        bitsize = bitfields[i];
        if (bitsize == 0)
            break;
        value |= float_to_unsigned(components[i], bitsize);
    }

    // Write out the value in the requested data type
    auto write_value = [&output_data]<typename T>(T value) -> void {
        **reinterpret_cast<T**>(output_data) = value;
        (*output_data) += sizeof(T);
    };
    switch (pixel_type.data_type) {
    case GPU::PixelDataType::UnsignedByte:
        write_value.operator()<u8>(value);
        break;
    case GPU::PixelDataType::UnsignedInt:
        write_value.operator()<u32>(value);
        break;
    case GPU::PixelDataType::UnsignedShort:
        write_value.operator()<u16>(value);
        break;
    default:
        VERIFY_NOT_REACHED();
    }
}

void PixelConverter::write_pixel(u8** output_data, FloatVector4 const& components)
{
    // NOTE: `components` is already clamped to 0.f..1.f

    // Reorder float components to data order
    auto const& pixel_type = m_output_specification.pixel_type;
    auto output_components = encode_component_order_for_format(components, pixel_type.format);
    if (pixel_type.components_order == GPU::ComponentsOrder::Reversed)
        output_components = { output_components[3], output_components[2], output_components[1], output_components[0] };

    // Write components as full data types
    auto const number_of_components_in_pixel = number_of_components(pixel_type.format);
    if (pixel_type.bits == GPU::PixelComponentBits::AllBits) {
        for (u8 i = 0; i < number_of_components_in_pixel; ++i)
            write_pixel_as_type(output_data, output_components[i], m_output_specification);
        return;
    }

    // Write components as a concatenated bitfield value
    VERIFY(number_of_components_in_pixel == number_of_components(pixel_type.bits));
    write_pixel_as_bitfield(output_data, output_components, pixel_type);
}

static constexpr GPU::ImageSelection restrain_selection_within_dimensions(GPU::ImageSelection selection, GPU::DimensionSpecification const& dimensions)
{
    if (selection.offset_x < 0) {
        selection.width += selection.offset_x;
        selection.offset_x = 0;
    }
    if (selection.offset_y < 0) {
        selection.height += selection.offset_y;
        selection.offset_y = 0;
    }
    if (selection.offset_z < 0) {
        selection.depth += selection.offset_z;
        selection.offset_z = 0;
    }

    if (selection.offset_x + selection.width > dimensions.width)
        selection.width = dimensions.width - selection.offset_x;
    if (selection.offset_y + selection.height > dimensions.height)
        selection.height = dimensions.height - selection.offset_y;
    if (selection.offset_z + selection.depth > dimensions.depth)
        selection.depth = dimensions.depth - selection.offset_z;

    return selection;
}

ErrorOr<void> PixelConverter::convert(void const* input_data, void* output_data, Function<void(FloatVector4&)> transform)
{
    // Verify pixel data specifications
    auto validate_image_data_layout = [](GPU::ImageDataLayout const& specification) -> ErrorOr<void> {
        if (specification.packing.row_stride > 0
            && specification.dimensions.width > specification.packing.row_stride)
            return Error::from_string_view("Width exceeds the row stride"sv);

        if (specification.packing.depth_stride > 0
            && specification.dimensions.height > specification.packing.depth_stride)
            return Error::from_string_view("Height exceeds the depth stride"sv);

        // NOTE: GL_BITMAP is removed from current OpenGL specs. Since it is largely unsupported and it
        //       requires extra logic (i.e. 8 vs. 1 pixel packing/unpacking), we also do not support it.
        if (specification.pixel_type.data_type == GPU::PixelDataType::Bitmap)
            return Error::from_string_view("Bitmap is unsupported"sv);

        return {};
    };
    TRY(validate_image_data_layout(m_input_specification));
    TRY(validate_image_data_layout(m_output_specification));

    // Restrain input and output selection:
    // - selection dimensions should be equal
    // - selection offsets cannot be negative
    // - selection bounds cannot exceed the image dimensions
    auto const& input_dimensions = m_input_specification.dimensions;
    auto const& output_dimensions = m_output_specification.dimensions;
    auto input_selection = restrain_selection_within_dimensions(m_input_specification.selection, input_dimensions);
    auto const& output_selection = restrain_selection_within_dimensions(m_output_specification.selection, output_dimensions);

    input_selection.width = min(input_selection.width, output_selection.width);
    input_selection.height = min(input_selection.height, output_selection.height);
    input_selection.depth = min(input_selection.depth, output_selection.depth);

    // Set up copy parameters
    auto const& input_packing = m_input_specification.packing;
    auto const input_pixels_per_row = input_packing.row_stride > 0 ? input_packing.row_stride : input_dimensions.width;
    auto const input_pixel_size_in_bytes = pixel_size_in_bytes(m_input_specification.pixel_type);
    auto const input_row_width_bytes = input_pixels_per_row * input_pixel_size_in_bytes;
    auto const input_byte_alignment = input_packing.byte_alignment;
    auto const input_row_stride = input_row_width_bytes + (input_byte_alignment - input_row_width_bytes % input_byte_alignment) % input_byte_alignment;
    auto const input_rows_per_image = input_packing.depth_stride > 0 ? input_packing.depth_stride : input_dimensions.height;
    auto const input_depth_stride = input_rows_per_image * input_row_stride;

    auto const& output_packing = m_output_specification.packing;
    auto const output_pixels_per_row = output_packing.row_stride > 0 ? output_packing.row_stride : output_dimensions.width;
    auto const output_pixel_size_in_bytes = pixel_size_in_bytes(m_output_specification.pixel_type);
    auto const output_row_width_bytes = output_pixels_per_row * output_pixel_size_in_bytes;
    auto const output_byte_alignment = output_packing.byte_alignment;
    auto const output_row_stride = output_row_width_bytes + (output_byte_alignment - output_row_width_bytes % output_byte_alignment) % output_byte_alignment;
    auto const output_rows_per_image = output_packing.depth_stride > 0 ? output_packing.depth_stride : output_dimensions.height;
    auto const output_depth_stride = output_rows_per_image * output_row_stride;

    // Copy all pixels from input to output
    auto input_bytes = reinterpret_cast<u8 const*>(input_data);
    auto output_bytes = reinterpret_cast<u8*>(output_data);
    auto output_z = output_selection.offset_z;
    for (u32 input_z = input_selection.offset_z; input_z < input_selection.offset_z + input_selection.depth; ++input_z) {
        auto output_y = output_selection.offset_y;
        for (u32 input_y = input_selection.offset_y; input_y < input_selection.offset_y + input_selection.height; ++input_y) {
            auto const* input_scanline = &input_bytes[input_z * input_depth_stride
                + input_y * input_row_stride
                + input_selection.offset_x * input_pixel_size_in_bytes];
            auto* output_scanline = &output_bytes[output_z * output_depth_stride
                + output_y * output_row_stride
                + output_selection.offset_x * output_pixel_size_in_bytes];
            for (u32 input_x = input_selection.offset_x; input_x < input_selection.offset_x + input_selection.width; ++input_x) {
                auto pixel_components = read_pixel(&input_scanline);
                if (transform)
                    transform(pixel_components);
                write_pixel(&output_scanline, pixel_components);
            }
            ++output_y;
        }
        ++output_z;
    }
    return {};
}

}