summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibSoftGPU/Device.cpp
blob: 71b00eb70d95cef78bcb982563f70d63deaf5a92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/*
 * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
 * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Function.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector2.h>
#include <LibGfx/Vector3.h>
#include <LibSoftGPU/Device.h>

namespace SoftGPU {

using IntVector2 = Gfx::Vector2<int>;
using IntVector3 = Gfx::Vector3<int>;

static constexpr int RASTERIZER_BLOCK_SIZE = 8;

constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
{
    return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
}

template<typename T>
constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector3& barycentric_coords)
{
    return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
}

template<typename T>
constexpr static T mix(const T& x, const T& y, float interp)
{
    return x * (1 - interp) + y * interp;
}

ALWAYS_INLINE constexpr static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
{
    auto clamped = v.clamped(0, 1);
    u8 r = clamped.x() * 255;
    u8 g = clamped.y() * 255;
    u8 b = clamped.z() * 255;
    u8 a = clamped.w() * 255;
    return a << 24 | r << 16 | g << 8 | b;
}

static FloatVector4 to_vec4(Gfx::RGBA32 rgba)
{
    return {
        ((rgba >> 16) & 0xff) / 255.0f,
        ((rgba >> 8) & 0xff) / 255.0f,
        (rgba & 0xff) / 255.0f,
        ((rgba >> 24) & 0xff) / 255.0f
    };
}

static Gfx::IntRect scissor_box_to_window_coordinates(Gfx::IntRect const& scissor_box, Gfx::IntRect const& window_rect)
{
    return scissor_box.translated(0, window_rect.height() - 2 * scissor_box.y() - scissor_box.height());
}

static constexpr void setup_blend_factors(BlendFactor mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color)
{
    constant = { 0.0f, 0.0f, 0.0f, 0.0f };
    src_alpha = 0;
    dst_alpha = 0;
    src_color = 0;
    dst_color = 0;

    switch (mode) {
    case BlendFactor::Zero:
        break;
    case BlendFactor::One:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        break;
    case BlendFactor::SrcColor:
        src_color = 1;
        break;
    case BlendFactor::OneMinusSrcColor:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        src_color = -1;
        break;
    case BlendFactor::SrcAlpha:
        src_alpha = 1;
        break;
    case BlendFactor::OneMinusSrcAlpha:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        src_alpha = -1;
        break;
    case BlendFactor::DstAlpha:
        dst_alpha = 1;
        break;
    case BlendFactor::OneMinusDstAlpha:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        dst_alpha = -1;
        break;
    case BlendFactor::DstColor:
        dst_color = 1;
        break;
    case BlendFactor::OneMinusDstColor:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        dst_color = -1;
        break;
    case BlendFactor::SrcAlphaSaturate:
        // FIXME: How do we implement this?
        break;
    default:
        VERIFY_NOT_REACHED();
    }
}

template<typename PS>
static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const Triangle& triangle, PS pixel_shader)
{
    // Since the algorithm is based on blocks of uniform size, we need
    // to ensure that our render_target size is actually a multiple of the block size
    VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
    VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);

    // Calculate area of the triangle for later tests
    IntVector2 v0 { (int)triangle.vertices[0].position.x(), (int)triangle.vertices[0].position.y() };
    IntVector2 v1 { (int)triangle.vertices[1].position.x(), (int)triangle.vertices[1].position.y() };
    IntVector2 v2 { (int)triangle.vertices[2].position.x(), (int)triangle.vertices[2].position.y() };

    int area = edge_function(v0, v1, v2);
    if (area == 0)
        return;

    float one_over_area = 1.0f / area;

    FloatVector4 src_constant {};
    float src_factor_src_alpha = 0;
    float src_factor_dst_alpha = 0;
    float src_factor_src_color = 0;
    float src_factor_dst_color = 0;

    FloatVector4 dst_constant {};
    float dst_factor_src_alpha = 0;
    float dst_factor_dst_alpha = 0;
    float dst_factor_src_color = 0;
    float dst_factor_dst_color = 0;

    if (options.enable_blending) {
        setup_blend_factors(
            options.blend_source_factor,
            src_constant,
            src_factor_src_alpha,
            src_factor_dst_alpha,
            src_factor_src_color,
            src_factor_dst_color);

        setup_blend_factors(
            options.blend_destination_factor,
            dst_constant,
            dst_factor_src_alpha,
            dst_factor_dst_alpha,
            dst_factor_src_color,
            dst_factor_dst_color);
    }

    // Obey top-left rule:
    // This sets up "zero" for later pixel coverage tests.
    // Depending on where on the triangle the edge is located
    // it is either tested against 0 or 1, effectively
    // turning "< 0" into "<= 0"
    IntVector3 zero { 1, 1, 1 };
    if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x()))
        zero.set_z(0);
    if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x()))
        zero.set_x(0);
    if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x()))
        zero.set_y(0);

    // This function calculates the 3 edge values for the pixel relative to the triangle.
    auto calculate_edge_values = [v0, v1, v2](const IntVector2& p) -> IntVector3 {
        return {
            edge_function(v1, v2, p),
            edge_function(v2, v0, p),
            edge_function(v0, v1, p),
        };
    };

    // This function tests whether a point as identified by its 3 edge values lies within the triangle
    auto test_point = [zero](const IntVector3& edges) -> bool {
        return edges.x() >= zero.x()
            && edges.y() >= zero.y()
            && edges.z() >= zero.z();
    };

    // Calculate block-based bounds
    auto render_bounds = render_target.rect();
    if (options.scissor_enabled)
        render_bounds.intersect(scissor_box_to_window_coordinates(options.scissor_box, render_target.rect()));
    int const block_padding = RASTERIZER_BLOCK_SIZE - 1;
    // clang-format off
    int const bx0 =  max(render_bounds.left(),   min(min(v0.x(), v1.x()), v2.x()))                  / RASTERIZER_BLOCK_SIZE;
    int const bx1 = (min(render_bounds.right(),  max(max(v0.x(), v1.x()), v2.x())) + block_padding) / RASTERIZER_BLOCK_SIZE;
    int const by0 =  max(render_bounds.top(),    min(min(v0.y(), v1.y()), v2.y()))                  / RASTERIZER_BLOCK_SIZE;
    int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y())) + block_padding) / RASTERIZER_BLOCK_SIZE;
    // clang-format on

    u8 pixel_mask[RASTERIZER_BLOCK_SIZE];
    static_assert(RASTERIZER_BLOCK_SIZE <= sizeof(decltype(*pixel_mask)) * 8, "RASTERIZER_BLOCK_SIZE must be smaller than the pixel_mask's width in bits");

    FloatVector4 pixel_buffer[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE];

    // FIXME: implement stencil testing

    // Iterate over all blocks within the bounds of the triangle
    for (int by = by0; by < by1; by++) {
        for (int bx = bx0; bx < bx1; bx++) {

            // Edge values of the 4 block corners
            // clang-format off
            auto b0 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE,                         by * RASTERIZER_BLOCK_SIZE });
            auto b1 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE });
            auto b2 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE,                         by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
            auto b3 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
            // clang-format on

            // If the whole block is outside any of the triangle edges we can discard it completely
            // We test this by and'ing the relevant edge function values together for all block corners
            // and checking if the negative sign bit is set for all of them
            if ((b0.x() & b1.x() & b2.x() & b3.x()) & 0x80000000)
                continue;

            if ((b0.y() & b1.y() & b2.y() & b3.y()) & 0x80000000)
                continue;

            if ((b0.z() & b1.z() & b2.z() & b3.z()) & 0x80000000)
                continue;

            // edge value derivatives
            auto dbdx = (b1 - b0) / RASTERIZER_BLOCK_SIZE;
            auto dbdy = (b2 - b0) / RASTERIZER_BLOCK_SIZE;
            // step edge value after each horizontal span: 1 down, BLOCK_SIZE left
            auto step_y = dbdy - dbdx * RASTERIZER_BLOCK_SIZE;

            int x0 = bx * RASTERIZER_BLOCK_SIZE;
            int y0 = by * RASTERIZER_BLOCK_SIZE;

            // Generate the coverage mask
            if (!options.scissor_enabled && test_point(b0) && test_point(b1) && test_point(b2) && test_point(b3)) {
                // The block is fully contained within the triangle. Fill the mask with all 1s
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++)
                    pixel_mask[y] = -1;
            } else {
                // The block overlaps at least one triangle edge.
                // We need to test coverage of every pixel within the block.
                auto coords = b0;
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
                    pixel_mask[y] = 0;

                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx) {
                        if (test_point(coords) && (!options.scissor_enabled || render_bounds.contains(x0 + x, y0 + y)))
                            pixel_mask[y] |= 1 << x;
                    }
                }
            }

            // AND the depth mask onto the coverage mask
            if (options.enable_depth_test) {
                int z_pass_count = 0;
                auto coords = b0;

                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
                    if (pixel_mask[y] == 0) {
                        coords += dbdx * RASTERIZER_BLOCK_SIZE;
                        continue;
                    }

                    auto* depth = &depth_buffer.scanline(y0 + y)[x0];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, depth++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
                        float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric);

                        z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2;

                        // FIXME: Also apply depth_offset_factor which depends on the depth gradient
                        z += options.depth_offset_constant * NumericLimits<float>::epsilon();

                        bool pass = false;
                        switch (options.depth_func) {
                        case DepthTestFunction::Always:
                            pass = true;
                            break;
                        case DepthTestFunction::Never:
                            pass = false;
                            break;
                        case DepthTestFunction::Greater:
                            pass = z > *depth;
                            break;
                        case DepthTestFunction::GreaterOrEqual:
                            pass = z >= *depth;
                            break;
                        case DepthTestFunction::NotEqual:
#ifdef __SSE__
                            pass = z != *depth;
#else
                            pass = bit_cast<u32>(z) != bit_cast<u32>(*depth);
#endif
                            break;
                        case DepthTestFunction::Equal:
#ifdef __SSE__
                            pass = z == *depth;
#else
                            //
                            // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
                            // compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
                            // it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is
                            // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
                            // used here the comparison fails.
                            // This could be solved by using a `long double` for the depth buffer, however this would take
                            // up significantly more space and is completely overkill for a depth buffer. As such, comparing
                            // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
                            // equal, we can pretty much guarantee that it's actually equal.
                            //
                            pass = bit_cast<u32>(z) == bit_cast<u32>(*depth);
#endif
                            break;
                        case DepthTestFunction::LessOrEqual:
                            pass = z <= *depth;
                            break;
                        case DepthTestFunction::Less:
                            pass = z < *depth;
                            break;
                        }

                        if (!pass) {
                            pixel_mask[y] ^= 1 << x;
                            continue;
                        }

                        if (options.enable_depth_write)
                            *depth = z;

                        z_pass_count++;
                    }
                }

                // Nice, no pixels passed the depth test -> block rejected by early z
                if (z_pass_count == 0)
                    continue;
            }

            // We will not update the color buffer at all
            if (!options.color_mask || !options.enable_color_write)
                continue;

            // Draw the pixels according to the previously generated mask
            auto coords = b0;
            for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
                if (pixel_mask[y] == 0) {
                    coords += dbdx * RASTERIZER_BLOCK_SIZE;
                    continue;
                }

                auto* pixel = pixel_buffer[y];
                for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, pixel++) {
                    if (~pixel_mask[y] & (1 << x))
                        continue;

                    // Perspective correct barycentric coordinates
                    auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
                    float interpolated_reciprocal_w = interpolate(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w(), barycentric);
                    float interpolated_w = 1 / interpolated_reciprocal_w;
                    barycentric = barycentric * FloatVector3(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w()) * interpolated_w;

                    // FIXME: make this more generic. We want to interpolate more than just color and uv
                    FloatVector4 vertex_color;
                    if (options.shade_smooth) {
                        vertex_color = interpolate(
                            triangle.vertices[0].color,
                            triangle.vertices[1].color,
                            triangle.vertices[2].color,
                            barycentric);
                    } else {
                        vertex_color = triangle.vertices[0].color;
                    }

                    auto uv = interpolate(
                        triangle.vertices[0].tex_coord,
                        triangle.vertices[1].tex_coord,
                        triangle.vertices[2].tex_coord,
                        barycentric);

                    // Calculate depth of fragment for fog
                    float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric);
                    z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2;

                    *pixel = pixel_shader(uv, vertex_color, z);
                }
            }

            if (options.enable_alpha_test && options.alpha_test_func != AlphaTestFunction::Always) {
                // FIXME: I'm not sure if this is the right place to test this.
                // If we tested this right at the beginning of our rasterizer routine
                // we could skip a lot of work but the GL spec might disagree.
                if (options.alpha_test_func == AlphaTestFunction::Never)
                    continue;

                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
                    auto src = pixel_buffer[y];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        bool passed = true;

                        switch (options.alpha_test_func) {
                        case AlphaTestFunction::Less:
                            passed = src->w() < options.alpha_test_ref_value;
                            break;
                        case AlphaTestFunction::Equal:
                            passed = src->w() == options.alpha_test_ref_value;
                            break;
                        case AlphaTestFunction::LessOrEqual:
                            passed = src->w() <= options.alpha_test_ref_value;
                            break;
                        case AlphaTestFunction::Greater:
                            passed = src->w() > options.alpha_test_ref_value;
                            break;
                        case AlphaTestFunction::NotEqual:
                            passed = src->w() != options.alpha_test_ref_value;
                            break;
                        case AlphaTestFunction::GreaterOrEqual:
                            passed = src->w() >= options.alpha_test_ref_value;
                            break;
                        case AlphaTestFunction::Never:
                        case AlphaTestFunction::Always:
                            VERIFY_NOT_REACHED();
                        }

                        if (!passed)
                            pixel_mask[y] ^= (1 << x);
                    }
                }
            }

            if (options.enable_blending) {
                // Blend color values from pixel_buffer into render_target
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
                    auto src = pixel_buffer[y];
                    auto dst = &render_target.scanline(y + y0)[x0];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        auto float_dst = to_vec4(*dst);

                        auto src_factor = src_constant
                            + *src * src_factor_src_color
                            + FloatVector4(src->w(), src->w(), src->w(), src->w()) * src_factor_src_alpha
                            + float_dst * src_factor_dst_color
                            + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * src_factor_dst_alpha;

                        auto dst_factor = dst_constant
                            + *src * dst_factor_src_color
                            + FloatVector4(src->w(), src->w(), src->w(), src->w()) * dst_factor_src_alpha
                            + float_dst * dst_factor_dst_color
                            + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * dst_factor_dst_alpha;

                        *dst = (*dst & ~options.color_mask) | (to_rgba32(*src * src_factor + float_dst * dst_factor) & options.color_mask);
                    }
                }
            } else {
                // Copy color values from pixel_buffer into render_target
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
                    auto src = pixel_buffer[y];
                    auto dst = &render_target.scanline(y + y0)[x0];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        *dst = (*dst & ~options.color_mask) | (to_rgba32(*src) & options.color_mask);
                    }
                }
            }
        }
    }
}

static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
{
    int width = ((min_size.width() + step - 1) / step) * step;
    int height = ((min_size.height() + step - 1) / step) * step;
    return { width, height };
}

Device::Device(const Gfx::IntSize& min_size)
    : m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors() }
    , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
{
    m_options.scissor_box = m_render_target->rect();
}

void Device::draw_primitives(GLenum primitive_type, FloatMatrix4x4 const& transform, FloatMatrix4x4 const& texture_matrix, Vector<Vertex> const& vertices, Vector<size_t> const& enabled_texture_units)
{
    // At this point, the user has effectively specified that they are done with defining the geometry
    // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
    //
    // 1.   Transform all of the vertices in the current vertex list into eye space by mulitplying the model-view matrix
    // 2.   Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
    // 3.   If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
    // 4.   Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
    // 5.   The vertices are sorted (for the rasteriser, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates)
    // 6.   The vertices are then sent off to the rasteriser and drawn to the screen

    float scr_width = m_render_target->width();
    float scr_height = m_render_target->height();

    m_triangle_list.clear_with_capacity();
    m_processed_triangles.clear_with_capacity();

    // Let's construct some triangles
    if (primitive_type == GL_TRIANGLES) {
        Triangle triangle;
        for (size_t i = 0; i < vertices.size(); i += 3) {
            triangle.vertices[0] = vertices.at(i);
            triangle.vertices[1] = vertices.at(i + 1);
            triangle.vertices[2] = vertices.at(i + 2);

            m_triangle_list.append(triangle);
        }
    } else if (primitive_type == GL_QUADS) {
        // We need to construct two triangles to form the quad
        Triangle triangle;
        VERIFY(vertices.size() % 4 == 0);
        for (size_t i = 0; i < vertices.size(); i += 4) {
            // Triangle 1
            triangle.vertices[0] = vertices.at(i);
            triangle.vertices[1] = vertices.at(i + 1);
            triangle.vertices[2] = vertices.at(i + 2);
            m_triangle_list.append(triangle);

            // Triangle 2
            triangle.vertices[0] = vertices.at(i + 2);
            triangle.vertices[1] = vertices.at(i + 3);
            triangle.vertices[2] = vertices.at(i);
            m_triangle_list.append(triangle);
        }
    } else if (primitive_type == GL_TRIANGLE_FAN || primitive_type == GL_POLYGON) {
        Triangle triangle;
        triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first

        for (size_t i = 1; i < vertices.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1
        {
            triangle.vertices[1] = vertices.at(i);
            triangle.vertices[2] = vertices.at(i + 1);
            m_triangle_list.append(triangle);
        }
    } else if (primitive_type == GL_TRIANGLE_STRIP) {
        Triangle triangle;
        for (size_t i = 0; i < vertices.size() - 2; i++) {
            triangle.vertices[0] = vertices.at(i);
            triangle.vertices[1] = vertices.at(i + 1);
            triangle.vertices[2] = vertices.at(i + 2);
            m_triangle_list.append(triangle);
        }
    }

    // Now let's transform each triangle and send that to the GPU
    for (size_t i = 0; i < m_triangle_list.size(); i++) {
        Triangle& triangle = m_triangle_list.at(i);

        // First multiply the vertex by the MODELVIEW matrix and then the PROJECTION matrix
        triangle.vertices[0].position = transform * triangle.vertices[0].position;
        triangle.vertices[1].position = transform * triangle.vertices[1].position;
        triangle.vertices[2].position = transform * triangle.vertices[2].position;

        // Apply texture transformation
        // FIXME: implement multi-texturing: texcoords should be stored per texture unit
        triangle.vertices[0].tex_coord = texture_matrix * triangle.vertices[0].tex_coord;
        triangle.vertices[1].tex_coord = texture_matrix * triangle.vertices[1].tex_coord;
        triangle.vertices[2].tex_coord = texture_matrix * triangle.vertices[2].tex_coord;

        // At this point, we're in clip space
        // Here's where we do the clipping. This is a really crude implementation of the
        // https://learnopengl.com/Getting-started/Coordinate-Systems
        // "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
        // will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
        //
        // ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER

        // Okay, let's do some face culling first

        m_clipped_vertices.clear_with_capacity();
        m_clipped_vertices.append(triangle.vertices[0]);
        m_clipped_vertices.append(triangle.vertices[1]);
        m_clipped_vertices.append(triangle.vertices[2]);
        m_clipper.clip_triangle_against_frustum(m_clipped_vertices);

        if (m_clipped_vertices.size() < 3)
            continue;

        for (auto& vec : m_clipped_vertices) {
            // perspective divide
            float w = vec.position.w();
            vec.position.set_x(vec.position.x() / w);
            vec.position.set_y(vec.position.y() / w);
            vec.position.set_z(vec.position.z() / w);
            vec.position.set_w(1 / w);

            // to screen space
            vec.position.set_x(scr_width / 2 + vec.position.x() * scr_width / 2);
            vec.position.set_y(scr_height / 2 - vec.position.y() * scr_height / 2);
        }

        Triangle tri;
        tri.vertices[0] = m_clipped_vertices[0];
        for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
            tri.vertices[1] = m_clipped_vertices[i];
            tri.vertices[2] = m_clipped_vertices[i + 1];
            m_processed_triangles.append(tri);
        }
    }

    for (size_t i = 0; i < m_processed_triangles.size(); i++) {
        Triangle& triangle = m_processed_triangles.at(i);

        // Let's calculate the (signed) area of the triangle
        // https://cp-algorithms.com/geometry/oriented-triangle-area.html
        float dxAB = triangle.vertices[0].position.x() - triangle.vertices[1].position.x(); // A.x - B.x
        float dxBC = triangle.vertices[1].position.x() - triangle.vertices[2].position.x(); // B.X - C.x
        float dyAB = triangle.vertices[0].position.y() - triangle.vertices[1].position.y();
        float dyBC = triangle.vertices[1].position.y() - triangle.vertices[2].position.y();
        float area = (dxAB * dyBC) - (dxBC * dyAB);

        if (area == 0.0f)
            continue;

        if (m_options.enable_culling) {
            bool is_front = (m_options.front_face == WindingOrder::CounterClockwise ? area < 0 : area > 0);

            if (!is_front && m_options.cull_back)
                continue;

            if (is_front && m_options.cull_front)
                continue;
        }

        if (area > 0) {
            swap(triangle.vertices[0], triangle.vertices[1]);
        }

        submit_triangle(triangle, enabled_texture_units);
    }
}

void Device::submit_triangle(const Triangle& triangle, Vector<size_t> const& enabled_texture_units)
{
    rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [this, &enabled_texture_units](FloatVector4 const& uv, FloatVector4 const& color, float z) -> FloatVector4 {
        FloatVector4 fragment = color;

        for (size_t i : enabled_texture_units) {
            // FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP
            auto const& sampler = m_samplers[i];

            FloatVector4 texel = sampler.sample_2d({ uv.x(), uv.y() });

            // FIXME: Implement more blend modes
            switch (sampler.config().fixed_function_texture_env_mode) {
            case TextureEnvMode::Modulate:
            default:
                fragment = fragment * texel;
                break;
            case TextureEnvMode::Replace:
                fragment = texel;
                break;
            case TextureEnvMode::Decal: {
                float src_alpha = fragment.w();
                float one_minus_src_alpha = 1 - src_alpha;
                fragment.set_x(texel.x() * src_alpha + fragment.x() * one_minus_src_alpha);
                fragment.set_y(texel.y() * src_alpha + fragment.y() * one_minus_src_alpha);
                fragment.set_z(texel.z() * src_alpha + fragment.z() * one_minus_src_alpha);
                break;
            }
            }
        }

        // Calculate fog
        // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
        if (m_options.fog_enabled) {
            float factor = 0.0f;
            switch (m_options.fog_mode) {
            case GL_LINEAR:
                factor = (m_options.fog_end - z) / (m_options.fog_end - m_options.fog_start);
                break;
            case GL_EXP:
                factor = exp(-((m_options.fog_density * z)));
                break;
            case GL_EXP2:
                factor = exp(-((m_options.fog_density * z) * (m_options.fog_density * z)));
                break;
            default:
                break;
            }

            // Mix texel with fog
            fragment = mix(m_options.fog_color, fragment, factor);
        }

        return fragment;
    });
}

void Device::resize(const Gfx::IntSize& min_size)
{
    wait_for_all_threads();

    m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors();
    m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
}

void Device::clear_color(const FloatVector4& color)
{
    wait_for_all_threads();

    uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
    uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
    uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
    uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
    auto const fill_color = Gfx::Color(r, g, b, a);

    if (m_options.scissor_enabled) {
        auto fill_rect = m_render_target->rect();
        fill_rect.intersect(scissor_box_to_window_coordinates(m_options.scissor_box, fill_rect));
        Gfx::Painter painter { *m_render_target };
        painter.fill_rect(fill_rect, fill_color);
        return;
    }

    m_render_target->fill(fill_color);
}

void Device::clear_depth(float depth)
{
    wait_for_all_threads();

    if (m_options.scissor_enabled) {
        m_depth_buffer->clear(scissor_box_to_window_coordinates(m_options.scissor_box, m_render_target->rect()), depth);
        return;
    }

    m_depth_buffer->clear(depth);
}

void Device::blit(Gfx::Bitmap const& source, int x, int y)
{
    wait_for_all_threads();

    Gfx::Painter painter { *m_render_target };
    painter.blit({ x, y }, source, source.rect(), 1.0f, true);
}

void Device::blit_to(Gfx::Bitmap& target)
{
    wait_for_all_threads();

    Gfx::Painter painter { target };
    painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
}

void Device::wait_for_all_threads() const
{
    // FIXME: Wait for all render threads to finish when multithreading is being implemented
}

void Device::set_options(const RasterizerOptions& options)
{
    wait_for_all_threads();

    m_options = options;

    // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
}

Gfx::RGBA32 Device::get_backbuffer_pixel(int x, int y)
{
    // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
    if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
        return 0;

    return m_render_target->scanline(y)[x];
}

float Device::get_depthbuffer_value(int x, int y)
{
    // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
    if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
        return 1.0f;

    return m_depth_buffer->scanline(y)[x];
}

NonnullRefPtr<Image> Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers)
{
    VERIFY(width > 0);
    VERIFY(height > 0);
    VERIFY(depth > 0);
    VERIFY(levels > 0);
    VERIFY(layers > 0);

    return adopt_ref(*new Image(format, width, height, depth, levels, layers));
}

void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config)
{
    VERIFY(sampler < num_samplers);

    m_samplers[sampler].set_config(config);
}

}