summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibSoftGPU/Device.cpp
blob: 669d18a30f76b6ee062b8bbc8f9c32ce85794ece (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
/*
 * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
 * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
 * Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Math.h>
#include <AK/NumericLimits.h>
#include <AK/SIMDExtras.h>
#include <AK/SIMDMath.h>
#include <LibCore/ElapsedTimer.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector2.h>
#include <LibGfx/Vector3.h>
#include <LibSoftGPU/Config.h>
#include <LibSoftGPU/Device.h>
#include <LibSoftGPU/PixelQuad.h>
#include <LibSoftGPU/SIMD.h>
#include <math.h>

namespace SoftGPU {

static long long g_num_rasterized_triangles;
static long long g_num_pixels;
static long long g_num_pixels_shaded;
static long long g_num_pixels_blended;
static long long g_num_sampler_calls;
static long long g_num_stencil_writes;
static long long g_num_quads;

using AK::SIMD::any;
using AK::SIMD::exp;
using AK::SIMD::expand4;
using AK::SIMD::f32x4;
using AK::SIMD::i32x4;
using AK::SIMD::load4_masked;
using AK::SIMD::maskbits;
using AK::SIMD::maskcount;
using AK::SIMD::none;
using AK::SIMD::store4_masked;
using AK::SIMD::to_f32x4;
using AK::SIMD::to_u32x4;
using AK::SIMD::u32x4;

constexpr static float edge_function(const FloatVector2& a, const FloatVector2& b, const FloatVector2& c)
{
    return (c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x());
}

constexpr static f32x4 edge_function4(const FloatVector2& a, const FloatVector2& b, const Vector2<f32x4>& c)
{
    return (c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x());
}

template<typename T, typename U>
constexpr static auto interpolate(const T& v0, const T& v1, const T& v2, const Vector3<U>& barycentric_coords)
{
    return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
}

static ColorType to_bgra32(FloatVector4 const& color)
{
    auto clamped = color.clamped(0.0f, 1.0f);
    auto r = static_cast<u8>(clamped.x() * 255);
    auto g = static_cast<u8>(clamped.y() * 255);
    auto b = static_cast<u8>(clamped.z() * 255);
    auto a = static_cast<u8>(clamped.w() * 255);
    return a << 24 | r << 16 | g << 8 | b;
}

ALWAYS_INLINE static u32x4 to_bgra32(Vector4<f32x4> const& v)
{
    auto clamped = v.clamped(expand4(0.0f), expand4(1.0f));
    auto r = to_u32x4(clamped.x() * 255);
    auto g = to_u32x4(clamped.y() * 255);
    auto b = to_u32x4(clamped.z() * 255);
    auto a = to_u32x4(clamped.w() * 255);

    return a << 24 | r << 16 | g << 8 | b;
}

static Vector4<f32x4> to_vec4(u32x4 bgra)
{
    auto constexpr one_over_255 = expand4(1.0f / 255);
    return {
        to_f32x4((bgra >> 16) & 0xff) * one_over_255,
        to_f32x4((bgra >> 8) & 0xff) * one_over_255,
        to_f32x4(bgra & 0xff) * one_over_255,
        to_f32x4((bgra >> 24) & 0xff) * one_over_255,
    };
}

void Device::setup_blend_factors()
{
    m_alpha_blend_factors = {};

    switch (m_options.blend_source_factor) {
    case BlendFactor::Zero:
        break;
    case BlendFactor::One:
        m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        break;
    case BlendFactor::SrcColor:
        m_alpha_blend_factors.src_factor_src_color = 1;
        break;
    case BlendFactor::OneMinusSrcColor:
        m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.src_factor_src_color = -1;
        break;
    case BlendFactor::SrcAlpha:
        m_alpha_blend_factors.src_factor_src_alpha = 1;
        break;
    case BlendFactor::OneMinusSrcAlpha:
        m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.src_factor_src_alpha = -1;
        break;
    case BlendFactor::DstAlpha:
        m_alpha_blend_factors.src_factor_dst_alpha = 1;
        break;
    case BlendFactor::OneMinusDstAlpha:
        m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.src_factor_dst_alpha = -1;
        break;
    case BlendFactor::DstColor:
        m_alpha_blend_factors.src_factor_dst_color = 1;
        break;
    case BlendFactor::OneMinusDstColor:
        m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.src_factor_dst_color = -1;
        break;
    case BlendFactor::SrcAlphaSaturate:
    default:
        VERIFY_NOT_REACHED();
    }

    switch (m_options.blend_destination_factor) {
    case BlendFactor::Zero:
        break;
    case BlendFactor::One:
        m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        break;
    case BlendFactor::SrcColor:
        m_alpha_blend_factors.dst_factor_src_color = 1;
        break;
    case BlendFactor::OneMinusSrcColor:
        m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.dst_factor_src_color = -1;
        break;
    case BlendFactor::SrcAlpha:
        m_alpha_blend_factors.dst_factor_src_alpha = 1;
        break;
    case BlendFactor::OneMinusSrcAlpha:
        m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.dst_factor_src_alpha = -1;
        break;
    case BlendFactor::DstAlpha:
        m_alpha_blend_factors.dst_factor_dst_alpha = 1;
        break;
    case BlendFactor::OneMinusDstAlpha:
        m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.dst_factor_dst_alpha = -1;
        break;
    case BlendFactor::DstColor:
        m_alpha_blend_factors.dst_factor_dst_color = 1;
        break;
    case BlendFactor::OneMinusDstColor:
        m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        m_alpha_blend_factors.dst_factor_dst_color = -1;
        break;
    case BlendFactor::SrcAlphaSaturate:
    default:
        VERIFY_NOT_REACHED();
    }
}

void Device::rasterize_triangle(const Triangle& triangle)
{
    INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);

    // Return if alpha testing is a no-op
    if (m_options.enable_alpha_test && m_options.alpha_test_func == AlphaTestFunction::Never)
        return;

    // Vertices
    Vertex const& vertex0 = triangle.vertices[0];
    Vertex const& vertex1 = triangle.vertices[1];
    Vertex const& vertex2 = triangle.vertices[2];

    // Calculate area of the triangle for later tests
    FloatVector2 const v0 = vertex0.window_coordinates.xy();
    FloatVector2 const v1 = vertex1.window_coordinates.xy();
    FloatVector2 const v2 = vertex2.window_coordinates.xy();

    auto const area = edge_function(v0, v1, v2);
    auto const one_over_area = 1.0f / area;

    auto render_bounds = m_frame_buffer->rect();
    if (m_options.scissor_enabled)
        render_bounds.intersect(m_options.scissor_box);

    // This function calculates the 3 edge values for the pixel relative to the triangle.
    auto calculate_edge_values4 = [v0, v1, v2](Vector2<f32x4> const& p) -> Vector3<f32x4> {
        return {
            edge_function4(v1, v2, p),
            edge_function4(v2, v0, p),
            edge_function4(v0, v1, p),
        };
    };

    // Zero is used in testing against edge values below, applying the "top-left rule". If a pixel
    // lies exactly on an edge shared by two triangles, we only render that pixel if the edge in
    // question is a "top" or "left" edge. We can detect those easily by testing for Y2 <= Y1,
    // since we know our vertices are in CCW order. By changing a float epsilon to 0, we
    // effectively change the comparisons against the edge values below from "> 0" into ">= 0".
    constexpr auto epsilon = NumericLimits<float>::epsilon();
    FloatVector3 zero { epsilon, epsilon, epsilon };
    if (v2.y() <= v1.y())
        zero.set_x(0.f);
    if (v0.y() <= v2.y())
        zero.set_y(0.f);
    if (v1.y() <= v0.y())
        zero.set_z(0.f);

    // This function tests whether a point as identified by its 3 edge values lies within the triangle
    auto test_point4 = [zero](Vector3<f32x4> const& edges) -> i32x4 {
        return edges.x() >= zero.x()
            && edges.y() >= zero.y()
            && edges.z() >= zero.z();
    };

    // Calculate block-based bounds
    // clang-format off
    int const bx0 =  max(render_bounds.left(),   min(min(v0.x(), v1.x()), v2.x())) & ~1;
    int const bx1 = (min(render_bounds.right(),  max(max(v0.x(), v1.x()), v2.x())) & ~1) + 2;
    int const by0 =  max(render_bounds.top(),    min(min(v0.y(), v1.y()), v2.y())) & ~1;
    int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y())) & ~1) + 2;
    // clang-format on

    // Calculate depth of fragment for fog;
    // OpenGL 1.5 spec chapter 3.10: "An implementation may choose to approximate the
    // eye-coordinate distance from the eye to each fragment center by |Ze|."
    f32x4 vertex0_fog_depth;
    f32x4 vertex1_fog_depth;
    f32x4 vertex2_fog_depth;
    if (m_options.fog_enabled) {
        vertex0_fog_depth = expand4(fabsf(vertex0.eye_coordinates.z()));
        vertex1_fog_depth = expand4(fabsf(vertex1.eye_coordinates.z()));
        vertex2_fog_depth = expand4(fabsf(vertex2.eye_coordinates.z()));
    }

    float const render_bounds_left = render_bounds.left();
    float const render_bounds_right = render_bounds.right();
    float const render_bounds_top = render_bounds.top();
    float const render_bounds_bottom = render_bounds.bottom();

    auto const half_pixel_offset = Vector2<f32x4> { expand4(.5f), expand4(.5f) };

    auto color_buffer = m_frame_buffer->color_buffer();
    auto depth_buffer = m_frame_buffer->depth_buffer();
    auto stencil_buffer = m_frame_buffer->stencil_buffer();

    // Stencil configuration and writing
    auto const& stencil_configuration = m_stencil_configuration[Face::Front];
    auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask;

    auto write_to_stencil = [](StencilType* stencil_ptrs[4], i32x4 stencil_value, StencilOperation op, StencilType reference_value, StencilType write_mask, i32x4 pixel_mask) {
        if (write_mask == 0 || op == StencilOperation::Keep)
            return;

        switch (op) {
        case StencilOperation::Decrement:
            stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask);
            break;
        case StencilOperation::DecrementWrap:
            stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask);
            break;
        case StencilOperation::Increment:
            stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask);
            break;
        case StencilOperation::IncrementWrap:
            stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask);
            break;
        case StencilOperation::Invert:
            stencil_value ^= write_mask;
            break;
        case StencilOperation::Replace:
            stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask);
            break;
        case StencilOperation::Zero:
            stencil_value &= ~write_mask;
            break;
        default:
            VERIFY_NOT_REACHED();
        }

        INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask));
        store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask);
    };

    // Iterate over all blocks within the bounds of the triangle
    for (int by = by0; by < by1; by += 2) {
        auto const f_by = static_cast<float>(by);
        for (int bx = bx0; bx < bx1; bx += 2) {
            PixelQuad quad;

            auto const f_bx = static_cast<float>(bx);
            quad.screen_coordinates = {
                f32x4 { f_bx, f_bx + 1, f_bx, f_bx + 1 },
                f32x4 { f_by, f_by, f_by + 1, f_by + 1 },
            };

            auto edge_values = calculate_edge_values4(quad.screen_coordinates + half_pixel_offset);

            // Generate triangle coverage mask
            quad.mask = test_point4(edge_values);

            // Test quad against intersection of render target size and scissor rect
            quad.mask &= quad.screen_coordinates.x() >= render_bounds_left
                && quad.screen_coordinates.x() <= render_bounds_right
                && quad.screen_coordinates.y() >= render_bounds_top
                && quad.screen_coordinates.y() <= render_bounds_bottom;

            if (none(quad.mask))
                continue;

            INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
            INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));

            int coverage_bits = maskbits(quad.mask);

            // Stencil testing
            StencilType* stencil_ptrs[4];
            i32x4 stencil_value;
            if (m_options.enable_stencil_test) {
                stencil_ptrs[0] = coverage_bits & 1 ? &stencil_buffer->scanline(by)[bx] : nullptr;
                stencil_ptrs[1] = coverage_bits & 2 ? &stencil_buffer->scanline(by)[bx + 1] : nullptr;
                stencil_ptrs[2] = coverage_bits & 4 ? &stencil_buffer->scanline(by + 1)[bx] : nullptr;
                stencil_ptrs[3] = coverage_bits & 8 ? &stencil_buffer->scanline(by + 1)[bx + 1] : nullptr;

                stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask);
                stencil_value &= stencil_configuration.test_mask;

                i32x4 stencil_test_passed;
                switch (stencil_configuration.test_function) {
                case StencilTestFunction::Always:
                    stencil_test_passed = expand4(~0);
                    break;
                case StencilTestFunction::Equal:
                    stencil_test_passed = stencil_value == stencil_reference_value;
                    break;
                case StencilTestFunction::Greater:
                    stencil_test_passed = stencil_value > stencil_reference_value;
                    break;
                case StencilTestFunction::GreaterOrEqual:
                    stencil_test_passed = stencil_value >= stencil_reference_value;
                    break;
                case StencilTestFunction::Less:
                    stencil_test_passed = stencil_value < stencil_reference_value;
                    break;
                case StencilTestFunction::LessOrEqual:
                    stencil_test_passed = stencil_value <= stencil_reference_value;
                    break;
                case StencilTestFunction::Never:
                    stencil_test_passed = expand4(0);
                    break;
                case StencilTestFunction::NotEqual:
                    stencil_test_passed = stencil_value != stencil_reference_value;
                    break;
                default:
                    VERIFY_NOT_REACHED();
                }

                // Update stencil buffer for pixels that failed the stencil test
                write_to_stencil(
                    stencil_ptrs,
                    stencil_value,
                    stencil_configuration.on_stencil_test_fail,
                    stencil_reference_value,
                    stencil_configuration.write_mask,
                    quad.mask & ~stencil_test_passed);

                // Update coverage mask + early quad rejection
                quad.mask &= stencil_test_passed;
                if (none(quad.mask))
                    continue;
            }

            // Calculate barycentric coordinates from previously calculated edge values
            quad.barycentrics = edge_values * one_over_area;

            // Depth testing
            DepthType* depth_ptrs[4] = {
                coverage_bits & 1 ? &depth_buffer->scanline(by)[bx] : nullptr,
                coverage_bits & 2 ? &depth_buffer->scanline(by)[bx + 1] : nullptr,
                coverage_bits & 4 ? &depth_buffer->scanline(by + 1)[bx] : nullptr,
                coverage_bits & 8 ? &depth_buffer->scanline(by + 1)[bx + 1] : nullptr,
            };
            if (m_options.enable_depth_test) {
                auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);

                quad.depth = interpolate(vertex0.window_coordinates.z(), vertex1.window_coordinates.z(), vertex2.window_coordinates.z(), quad.barycentrics);
                // FIXME: Also apply depth_offset_factor which depends on the depth gradient
                if (m_options.depth_offset_enabled)
                    quad.depth += m_options.depth_offset_constant * NumericLimits<float>::epsilon();

                i32x4 depth_test_passed;
                switch (m_options.depth_func) {
                case DepthTestFunction::Always:
                    depth_test_passed = expand4(~0);
                    break;
                case DepthTestFunction::Never:
                    depth_test_passed = expand4(0);
                    break;
                case DepthTestFunction::Greater:
                    depth_test_passed = quad.depth > depth;
                    break;
                case DepthTestFunction::GreaterOrEqual:
                    depth_test_passed = quad.depth >= depth;
                    break;
                case DepthTestFunction::NotEqual:
#ifdef __SSE__
                    depth_test_passed = quad.depth != depth;
#else
                    depth_test_passed = i32x4 {
                        bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0,
                        bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0,
                        bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0,
                        bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0,
                    };
#endif
                    break;
                case DepthTestFunction::Equal:
#ifdef __SSE__
                    depth_test_passed = quad.depth == depth;
#else
                    //
                    // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
                    // compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
                    // it is an 80-bit x87 floating point number, however, when stored into the depth buffer, this is
                    // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
                    // used here the comparison fails.
                    // This could be solved by using a `long double` for the depth buffer, however this would take
                    // up significantly more space and is completely overkill for a depth buffer. As such, comparing
                    // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
                    // equal, we can pretty much guarantee that it's actually equal.
                    //
                    depth_test_passed = i32x4 {
                        bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0,
                        bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0,
                        bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0,
                        bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0,
                    };
#endif
                    break;
                case DepthTestFunction::LessOrEqual:
                    depth_test_passed = quad.depth <= depth;
                    break;
                case DepthTestFunction::Less:
                    depth_test_passed = quad.depth < depth;
                    break;
                default:
                    VERIFY_NOT_REACHED();
                }

                // Update stencil buffer for pixels that failed the depth test
                if (m_options.enable_stencil_test) {
                    write_to_stencil(
                        stencil_ptrs,
                        stencil_value,
                        stencil_configuration.on_depth_test_fail,
                        stencil_reference_value,
                        stencil_configuration.write_mask,
                        quad.mask & ~depth_test_passed);
                }

                // Update coverage mask + early quad rejection
                quad.mask &= depth_test_passed;
                if (none(quad.mask))
                    continue;
            }

            // Update stencil buffer for passed pixels
            if (m_options.enable_stencil_test) {
                write_to_stencil(
                    stencil_ptrs,
                    stencil_value,
                    stencil_configuration.on_pass,
                    stencil_reference_value,
                    stencil_configuration.write_mask,
                    quad.mask);
            }

            INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));

            // Draw the pixels according to the previously generated mask
            auto const w_coordinates = Vector3<f32x4> {
                expand4(vertex0.window_coordinates.w()),
                expand4(vertex1.window_coordinates.w()),
                expand4(vertex2.window_coordinates.w()),
            };

            auto const interpolated_reciprocal_w = interpolate(w_coordinates.x(), w_coordinates.y(), w_coordinates.z(), quad.barycentrics);
            quad.barycentrics = quad.barycentrics * w_coordinates / interpolated_reciprocal_w;

            // FIXME: make this more generic. We want to interpolate more than just color and uv
            if (m_options.shade_smooth)
                quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics);
            else
                quad.vertex_color = expand4(vertex0.color);

            for (size_t i = 0; i < NUM_SAMPLERS; ++i)
                quad.texture_coordinates[i] = interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics);

            if (m_options.fog_enabled)
                quad.fog_depth = interpolate(vertex0_fog_depth, vertex1_fog_depth, vertex2_fog_depth, quad.barycentrics);

            shade_fragments(quad);

            if (m_options.enable_alpha_test && m_options.alpha_test_func != AlphaTestFunction::Always && !test_alpha(quad))
                continue;

            // Write to depth buffer
            if (m_options.enable_depth_test && m_options.enable_depth_write)
                store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);

            // We will not update the color buffer at all
            if ((m_options.color_mask == 0) || !m_options.enable_color_write)
                continue;

            ColorType* color_ptrs[4] = {
                coverage_bits & 1 ? &color_buffer->scanline(by)[bx] : nullptr,
                coverage_bits & 2 ? &color_buffer->scanline(by)[bx + 1] : nullptr,
                coverage_bits & 4 ? &color_buffer->scanline(by + 1)[bx] : nullptr,
                coverage_bits & 8 ? &color_buffer->scanline(by + 1)[bx + 1] : nullptr,
            };

            u32x4 dst_u32;
            if (m_options.enable_blending || m_options.color_mask != 0xffffffff)
                dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);

            if (m_options.enable_blending) {
                INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));

                // Blend color values from pixel_staging into color_buffer
                Vector4<f32x4> const& src = quad.out_color;
                auto dst = to_vec4(dst_u32);

                auto src_factor = expand4(m_alpha_blend_factors.src_constant)
                    + src * m_alpha_blend_factors.src_factor_src_color
                    + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.src_factor_src_alpha
                    + dst * m_alpha_blend_factors.src_factor_dst_color
                    + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.src_factor_dst_alpha;

                auto dst_factor = expand4(m_alpha_blend_factors.dst_constant)
                    + src * m_alpha_blend_factors.dst_factor_src_color
                    + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.dst_factor_src_alpha
                    + dst * m_alpha_blend_factors.dst_factor_dst_color
                    + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.dst_factor_dst_alpha;

                quad.out_color = src * src_factor + dst * dst_factor;
            }

            if (m_options.color_mask == 0xffffffff)
                store4_masked(to_bgra32(quad.out_color), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
            else
                store4_masked((to_bgra32(quad.out_color) & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
        }
    }
}

Device::Device(Gfx::IntSize const& size)
    : m_frame_buffer(FrameBuffer<ColorType, DepthType, StencilType>::try_create(size).release_value_but_fixme_should_propagate_errors())
{
    m_options.scissor_box = m_frame_buffer->rect();
    m_options.viewport = m_frame_buffer->rect();
}

DeviceInfo Device::info() const
{
    return {
        .vendor_name = "SerenityOS",
        .device_name = "SoftGPU",
        .num_texture_units = NUM_SAMPLERS,
        .num_lights = NUM_LIGHTS,
        .stencil_bits = sizeof(StencilType) * 8,
        .supports_npot_textures = true,
    };
}

static void generate_texture_coordinates(Vertex& vertex, RasterizerOptions const& options)
{
    auto generate_coordinate = [&](size_t texcoord_index, size_t config_index) -> float {
        auto mode = options.texcoord_generation_config[texcoord_index][config_index].mode;

        switch (mode) {
        case TexCoordGenerationMode::ObjectLinear: {
            auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients;
            return coefficients.dot(vertex.position);
        }
        case TexCoordGenerationMode::EyeLinear: {
            auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients;
            return coefficients.dot(vertex.eye_coordinates);
        }
        case TexCoordGenerationMode::SphereMap: {
            auto const eye_unit = vertex.eye_coordinates.normalized();
            FloatVector3 const eye_unit_xyz = eye_unit.xyz();
            auto const normal = vertex.normal;
            auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
            reflection.set_z(reflection.z() + 1);
            auto const reflection_value = reflection[config_index];
            return reflection_value / (2 * reflection.length()) + 0.5f;
        }
        case TexCoordGenerationMode::ReflectionMap: {
            auto const eye_unit = vertex.eye_coordinates.normalized();
            FloatVector3 const eye_unit_xyz = eye_unit.xyz();
            auto const normal = vertex.normal;
            auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
            return reflection[config_index];
        }
        case TexCoordGenerationMode::NormalMap: {
            return vertex.normal[config_index];
        }
        default:
            VERIFY_NOT_REACHED();
        }
    };

    for (size_t i = 0; i < vertex.tex_coords.size(); ++i) {
        auto& tex_coord = vertex.tex_coords[i];
        auto const enabled_coords = options.texcoord_generation_enabled_coordinates[i];
        tex_coord = {
            ((enabled_coords & TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(i, 0) : tex_coord.x(),
            ((enabled_coords & TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(i, 1) : tex_coord.y(),
            ((enabled_coords & TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(i, 2) : tex_coord.z(),
            ((enabled_coords & TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(i, 3) : tex_coord.w(),
        };
    }
}

void Device::draw_primitives(PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix3x3 const& normal_transform,
    FloatMatrix4x4 const& projection_transform, FloatMatrix4x4 const& texture_transform, Vector<Vertex> const& vertices,
    Vector<size_t> const& enabled_texture_units)
{
    // At this point, the user has effectively specified that they are done with defining the geometry
    // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
    //
    // 1.   Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
    // 2.   Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
    // 3.   If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
    // 4.   Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
    // 5.   The vertices are sorted (for the rasterizer, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates)
    // 6.   The vertices are then sent off to the rasterizer and drawn to the screen

    m_enabled_texture_units = enabled_texture_units;

    m_triangle_list.clear_with_capacity();
    m_processed_triangles.clear_with_capacity();

    // Let's construct some triangles
    if (primitive_type == PrimitiveType::Triangles) {
        Triangle triangle;
        if (vertices.size() < 3)
            return;
        for (size_t i = 0; i < vertices.size() - 2; i += 3) {
            triangle.vertices[0] = vertices.at(i);
            triangle.vertices[1] = vertices.at(i + 1);
            triangle.vertices[2] = vertices.at(i + 2);

            m_triangle_list.append(triangle);
        }
    } else if (primitive_type == PrimitiveType::Quads) {
        // We need to construct two triangles to form the quad
        Triangle triangle;
        if (vertices.size() < 4)
            return;
        for (size_t i = 0; i < vertices.size() - 3; i += 4) {
            // Triangle 1
            triangle.vertices[0] = vertices.at(i);
            triangle.vertices[1] = vertices.at(i + 1);
            triangle.vertices[2] = vertices.at(i + 2);
            m_triangle_list.append(triangle);

            // Triangle 2
            triangle.vertices[0] = vertices.at(i + 2);
            triangle.vertices[1] = vertices.at(i + 3);
            triangle.vertices[2] = vertices.at(i);
            m_triangle_list.append(triangle);
        }
    } else if (primitive_type == PrimitiveType::TriangleFan) {
        Triangle triangle;
        triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first

        // This is technically `n-2` triangles. We start at index 1
        for (size_t i = 1; i < vertices.size() - 1; i++) {
            triangle.vertices[1] = vertices.at(i);
            triangle.vertices[2] = vertices.at(i + 1);
            m_triangle_list.append(triangle);
        }
    } else if (primitive_type == PrimitiveType::TriangleStrip) {
        Triangle triangle;
        if (vertices.size() < 3)
            return;
        for (size_t i = 0; i < vertices.size() - 2; i++) {
            if (i % 2 == 0) {
                triangle.vertices[0] = vertices.at(i);
                triangle.vertices[1] = vertices.at(i + 1);
                triangle.vertices[2] = vertices.at(i + 2);
            } else {
                triangle.vertices[0] = vertices.at(i + 1);
                triangle.vertices[1] = vertices.at(i);
                triangle.vertices[2] = vertices.at(i + 2);
            }
            m_triangle_list.append(triangle);
        }
    }

    // Now let's transform each triangle and send that to the GPU
    auto const viewport = m_options.viewport;
    auto const viewport_half_width = viewport.width() / 2.0f;
    auto const viewport_half_height = viewport.height() / 2.0f;
    auto const viewport_center_x = viewport.x() + viewport_half_width;
    auto const viewport_center_y = viewport.y() + viewport_half_height;
    auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
    auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
    for (auto& triangle : m_triangle_list) {
        // Transform vertices into eye coordinates using the model-view transform
        triangle.vertices[0].eye_coordinates = model_view_transform * triangle.vertices[0].position;
        triangle.vertices[1].eye_coordinates = model_view_transform * triangle.vertices[1].position;
        triangle.vertices[2].eye_coordinates = model_view_transform * triangle.vertices[2].position;

        // Transform the vertex normals into eye-space
        triangle.vertices[0].normal = transform_direction(model_view_transform, triangle.vertices[0].normal);
        triangle.vertices[1].normal = transform_direction(model_view_transform, triangle.vertices[1].normal);
        triangle.vertices[2].normal = transform_direction(model_view_transform, triangle.vertices[2].normal);

        // Calculate per-vertex lighting
        if (m_options.lighting_enabled) {
            auto const& material = m_materials.at(0);
            for (auto& vertex : triangle.vertices) {
                auto ambient = material.ambient;
                auto diffuse = material.diffuse;
                auto emissive = material.emissive;
                auto specular = material.specular;

                if (m_options.color_material_enabled
                    && (m_options.color_material_face == ColorMaterialFace::Front || m_options.color_material_face == ColorMaterialFace::FrontAndBack)) {
                    switch (m_options.color_material_mode) {
                    case ColorMaterialMode::Ambient:
                        ambient = vertex.color;
                        break;
                    case ColorMaterialMode::AmbientAndDiffuse:
                        ambient = vertex.color;
                        diffuse = vertex.color;
                        break;
                    case ColorMaterialMode::Diffuse:
                        diffuse = vertex.color;
                        break;
                    case ColorMaterialMode::Emissive:
                        emissive = vertex.color;
                        break;
                    case ColorMaterialMode::Specular:
                        specular = vertex.color;
                        break;
                    }
                }

                FloatVector4 result_color = emissive + (ambient * m_lighting_model.scene_ambient_color);

                for (auto const& light : m_lights) {
                    if (!light.is_enabled)
                        continue;

                    // We need to save the length here because the attenuation factor requires a non-normalized vector!
                    auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& output_length) {
                        FloatVector3 light_vector;
                        if ((p1.w() != 0.f) && (p2.w() == 0.f))
                            light_vector = p2.xyz();
                        else if ((p1.w() == 0.f) && (p2.w() != 0.f))
                            light_vector = -p1.xyz();
                        else
                            light_vector = p2.xyz() - p1.xyz();

                        output_length = light_vector.length();
                        if (output_length == 0.f)
                            return light_vector;
                        return light_vector / output_length;
                    };

                    auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) {
                        return AK::max(d1.dot(d2), 0.0f);
                    };

                    float vertex_to_light_length = 0.f;
                    FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vertex_to_light_length);

                    // Light attenuation value.
                    float light_attenuation_factor = 1.0f;
                    if (light.position.w() != 0.0f)
                        light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length * vertex_to_light_length));

                    // Spotlight factor
                    float spotlight_factor = 1.0f;
                    if (light.spotlight_cutoff_angle != 180.0f) {
                        auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized());
                        auto const cos_spotlight_cutoff = AK::cos<float>(light.spotlight_cutoff_angle * AK::Pi<float> / 180.f);

                        if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff)
                            spotlight_factor = AK::pow<float>(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent);
                        else
                            spotlight_factor = 0.0f;
                    }

                    // FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means.
                    (void)m_lighting_model.color_control;

                    // FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material)
                    (void)m_lighting_model.two_sided_lighting;

                    // Ambient
                    auto const ambient_component = ambient * light.ambient_intensity;

                    // Diffuse
                    auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light);
                    auto const diffuse_component = ((diffuse * light.diffuse_intensity) * normal_dot_vertex_to_light);

                    // Specular
                    FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f };
                    if (normal_dot_vertex_to_light > 0.0f) {
                        FloatVector3 half_vector_normalized;
                        if (!m_lighting_model.viewer_at_infinity) {
                            half_vector_normalized = (vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f)).normalized();
                        } else {
                            auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates.normalized(), { 0.f, 0.f, 0.f, 1.f }, vertex_to_light_length);
                            half_vector_normalized = vertex_to_light + vertex_to_eye_point;
                        }

                        auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal.normalized(), half_vector_normalized);
                        auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess);
                        specular_component = (specular * light.specular_intensity) * specular_coefficient;
                    }

                    auto color = ambient_component + diffuse_component + specular_component;
                    color = color * light_attenuation_factor * spotlight_factor;
                    result_color += color;
                }

                vertex.color = result_color;
                vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material"
                vertex.color.clamp(0.0f, 1.0f);
            }
        }

        // Transform eye coordinates into clip coordinates using the projection transform
        triangle.vertices[0].clip_coordinates = projection_transform * triangle.vertices[0].eye_coordinates;
        triangle.vertices[1].clip_coordinates = projection_transform * triangle.vertices[1].eye_coordinates;
        triangle.vertices[2].clip_coordinates = projection_transform * triangle.vertices[2].eye_coordinates;

        // At this point, we're in clip space
        // Here's where we do the clipping. This is a really crude implementation of the
        // https://learnopengl.com/Getting-started/Coordinate-Systems
        // "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
        // will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
        //
        // ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER

        // Okay, let's do some face culling first

        m_clipped_vertices.clear_with_capacity();
        m_clipped_vertices.append(triangle.vertices[0]);
        m_clipped_vertices.append(triangle.vertices[1]);
        m_clipped_vertices.append(triangle.vertices[2]);
        m_clipper.clip_triangle_against_frustum(m_clipped_vertices);

        if (m_clipped_vertices.size() < 3)
            continue;

        for (auto& vec : m_clipped_vertices) {
            // To normalized device coordinates (NDC)
            auto const one_over_w = 1 / vec.clip_coordinates.w();
            auto const ndc_coordinates = FloatVector4 {
                vec.clip_coordinates.x() * one_over_w,
                vec.clip_coordinates.y() * one_over_w,
                vec.clip_coordinates.z() * one_over_w,
                one_over_w,
            };

            // To window coordinates
            vec.window_coordinates = {
                viewport_center_x + ndc_coordinates.x() * viewport_half_width,
                viewport_center_y + ndc_coordinates.y() * viewport_half_height,
                depth_halfway + ndc_coordinates.z() * depth_half_range,
                ndc_coordinates.w(),
            };
        }

        Triangle tri;
        tri.vertices[0] = m_clipped_vertices[0];
        for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
            tri.vertices[1] = m_clipped_vertices[i];
            tri.vertices[2] = m_clipped_vertices[i + 1];
            m_processed_triangles.append(tri);
        }
    }

    // Generate texture coordinates if at least one coordinate is enabled
    bool texture_coordinate_generation_enabled = false;
    for (auto const coordinates_enabled : m_options.texcoord_generation_enabled_coordinates) {
        if (coordinates_enabled != TexCoordGenerationCoordinate::None) {
            texture_coordinate_generation_enabled = true;
            break;
        }
    }

    for (auto& triangle : m_processed_triangles) {
        // Let's calculate the (signed) area of the triangle
        // https://cp-algorithms.com/geometry/oriented-triangle-area.html
        float dxAB = triangle.vertices[0].window_coordinates.x() - triangle.vertices[1].window_coordinates.x(); // A.x - B.x
        float dxBC = triangle.vertices[1].window_coordinates.x() - triangle.vertices[2].window_coordinates.x(); // B.X - C.x
        float dyAB = triangle.vertices[0].window_coordinates.y() - triangle.vertices[1].window_coordinates.y();
        float dyBC = triangle.vertices[1].window_coordinates.y() - triangle.vertices[2].window_coordinates.y();
        float area = (dxAB * dyBC) - (dxBC * dyAB);

        if (area == 0.0f)
            continue;

        if (m_options.enable_culling) {
            bool is_front = (m_options.front_face == WindingOrder::CounterClockwise ? area > 0 : area < 0);

            if (!is_front && m_options.cull_back)
                continue;

            if (is_front && m_options.cull_front)
                continue;
        }

        if (area > 0)
            swap(triangle.vertices[0], triangle.vertices[1]);

        // Transform normals
        triangle.vertices[0].normal = normal_transform * triangle.vertices[0].normal;
        triangle.vertices[1].normal = normal_transform * triangle.vertices[1].normal;
        triangle.vertices[2].normal = normal_transform * triangle.vertices[2].normal;
        if (m_options.normalization_enabled) {
            triangle.vertices[0].normal.normalize();
            triangle.vertices[1].normal.normalize();
            triangle.vertices[2].normal.normalize();
        }

        if (texture_coordinate_generation_enabled) {
            generate_texture_coordinates(triangle.vertices[0], m_options);
            generate_texture_coordinates(triangle.vertices[1], m_options);
            generate_texture_coordinates(triangle.vertices[2], m_options);
        }

        // Apply texture transformation
        for (size_t i = 0; i < NUM_SAMPLERS; ++i) {
            triangle.vertices[0].tex_coords[i] = texture_transform * triangle.vertices[0].tex_coords[i];
            triangle.vertices[1].tex_coords[i] = texture_transform * triangle.vertices[1].tex_coords[i];
            triangle.vertices[2].tex_coords[i] = texture_transform * triangle.vertices[2].tex_coords[i];
        }

        rasterize_triangle(triangle);
    }
}

ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad)
{
    quad.out_color = quad.vertex_color;

    for (size_t i : m_enabled_texture_units) {
        // FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP
        auto const& sampler = m_samplers[i];

        auto texel = sampler.sample_2d(quad.texture_coordinates[i].xy());
        INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);

        // FIXME: Implement more blend modes
        switch (sampler.config().fixed_function_texture_env_mode) {
        case TextureEnvMode::Modulate:
            quad.out_color = quad.out_color * texel;
            break;
        case TextureEnvMode::Replace:
            quad.out_color = texel;
            break;
        case TextureEnvMode::Decal: {
            auto dst_alpha = texel.w();
            quad.out_color.set_x(mix(quad.out_color.x(), texel.x(), dst_alpha));
            quad.out_color.set_y(mix(quad.out_color.y(), texel.y(), dst_alpha));
            quad.out_color.set_z(mix(quad.out_color.z(), texel.z(), dst_alpha));
            break;
        }
        default:
            VERIFY_NOT_REACHED();
        }
    }

    // Calculate fog
    // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html

    // FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
    if (m_options.fog_enabled) {
        auto factor = expand4(0.0f);
        switch (m_options.fog_mode) {
        case FogMode::Linear:
            factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
            break;
        case FogMode::Exp: {
            auto argument = -m_options.fog_density * quad.fog_depth;
            factor = exp(argument);
        } break;
        case FogMode::Exp2: {
            auto argument = m_options.fog_density * quad.fog_depth;
            argument *= -argument;
            factor = exp(argument);
        } break;
        default:
            VERIFY_NOT_REACHED();
        }

        // Mix texel's RGB with fog's RBG - leave alpha alone
        auto fog_color = expand4(m_options.fog_color);
        quad.out_color.set_x(mix(fog_color.x(), quad.out_color.x(), factor));
        quad.out_color.set_y(mix(fog_color.y(), quad.out_color.y(), factor));
        quad.out_color.set_z(mix(fog_color.z(), quad.out_color.z(), factor));
    }
}

ALWAYS_INLINE bool Device::test_alpha(PixelQuad& quad)
{
    auto const alpha = quad.out_color.w();
    auto const ref_value = expand4(m_options.alpha_test_ref_value);

    switch (m_options.alpha_test_func) {
    case AlphaTestFunction::Less:
        quad.mask &= alpha < ref_value;
        break;
    case AlphaTestFunction::Equal:
        quad.mask &= alpha == ref_value;
        break;
    case AlphaTestFunction::LessOrEqual:
        quad.mask &= alpha <= ref_value;
        break;
    case AlphaTestFunction::Greater:
        quad.mask &= alpha > ref_value;
        break;
    case AlphaTestFunction::NotEqual:
        quad.mask &= alpha != ref_value;
        break;
    case AlphaTestFunction::GreaterOrEqual:
        quad.mask &= alpha >= ref_value;
        break;
    case AlphaTestFunction::Never:
    case AlphaTestFunction::Always:
    default:
        VERIFY_NOT_REACHED();
    }

    return any(quad.mask);
}

void Device::resize(Gfx::IntSize const& size)
{
    auto frame_buffer_or_error = FrameBuffer<ColorType, DepthType, StencilType>::try_create(size);
    m_frame_buffer = MUST(frame_buffer_or_error);
}

void Device::clear_color(FloatVector4 const& color)
{
    auto const fill_color = to_bgra32(color);

    auto clear_rect = m_frame_buffer->rect();
    if (m_options.scissor_enabled)
        clear_rect.intersect(m_options.scissor_box);

    m_frame_buffer->color_buffer()->fill(fill_color, clear_rect);
}

void Device::clear_depth(DepthType depth)
{
    auto clear_rect = m_frame_buffer->rect();
    if (m_options.scissor_enabled)
        clear_rect.intersect(m_options.scissor_box);

    m_frame_buffer->depth_buffer()->fill(depth, clear_rect);
}

void Device::clear_stencil(StencilType value)
{
    auto clear_rect = m_frame_buffer->rect();
    if (m_options.scissor_enabled)
        clear_rect.intersect(m_options.scissor_box);

    m_frame_buffer->stencil_buffer()->fill(value, clear_rect);
}

void Device::blit_to_color_buffer_at_raster_position(Gfx::Bitmap const& source)
{
    if (!m_raster_position.valid)
        return;

    INCREASE_STATISTICS_COUNTER(g_num_pixels, source.width() * source.height());
    INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, source.width() * source.height());

    auto const blit_rect = get_rasterization_rect_of_size({ source.width(), source.height() });
    m_frame_buffer->color_buffer()->blit_from_bitmap(source, blit_rect);
}

void Device::blit_to_depth_buffer_at_raster_position(Vector<DepthType> const& depth_values, int width, int height)
{
    if (!m_raster_position.valid)
        return;

    auto const raster_rect = get_rasterization_rect_of_size({ width, height });
    auto const y1 = raster_rect.y();
    auto const y2 = y1 + height;
    auto const x1 = raster_rect.x();
    auto const x2 = x1 + width;

    auto index = 0;
    for (auto y = y1; y < y2; ++y) {
        auto depth_line = m_frame_buffer->depth_buffer()->scanline(y);
        for (auto x = x1; x < x2; ++x)
            depth_line[x] = depth_values[index++];
    }
}

void Device::blit_color_buffer_to(Gfx::Bitmap& target)
{
    m_frame_buffer->color_buffer()->blit_flipped_to_bitmap(target, m_frame_buffer->rect());

    if constexpr (ENABLE_STATISTICS_OVERLAY)
        draw_statistics_overlay(target);
}

void Device::draw_statistics_overlay(Gfx::Bitmap& target)
{
    static Core::ElapsedTimer timer;
    static String debug_string;
    static int frame_counter;

    frame_counter++;
    int milliseconds = 0;
    if (timer.is_valid())
        milliseconds = timer.elapsed();
    else
        timer.start();

    Gfx::Painter painter { target };

    if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) {

        int num_rendertarget_pixels = m_frame_buffer->rect().size().area();

        StringBuilder builder;
        builder.append(String::formatted("Timings      : {:.1}ms {:.1}FPS\n",
            static_cast<double>(milliseconds) / frame_counter,
            (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0));
        builder.append(String::formatted("Triangles    : {}\n", g_num_rasterized_triangles));
        builder.append(String::formatted("SIMD usage   : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0));
        builder.append(String::formatted("Pixels       : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
            g_num_pixels,
            g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0,
            g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0,
            g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0,
            num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0));
        builder.append(String::formatted("Sampler calls: {}\n", g_num_sampler_calls));

        debug_string = builder.to_string();

        frame_counter = 0;
        timer.start();
    }

    g_num_rasterized_triangles = 0;
    g_num_pixels = 0;
    g_num_pixels_shaded = 0;
    g_num_pixels_blended = 0;
    g_num_sampler_calls = 0;
    g_num_stencil_writes = 0;
    g_num_quads = 0;

    auto& font = Gfx::FontDatabase::default_fixed_width_font();

    for (int y = -1; y < 2; y++)
        for (int x = -1; x < 2; x++)
            if (x != 0 && y != 0)
                painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);

    painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
}

void Device::set_options(const RasterizerOptions& options)
{
    m_options = options;

    if (m_options.enable_blending)
        setup_blend_factors();
}

void Device::set_light_model_params(const LightModelParameters& lighting_model)
{
    m_lighting_model = lighting_model;
}

ColorType Device::get_color_buffer_pixel(int x, int y)
{
    // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
    if (!m_frame_buffer->rect().contains(x, y))
        return 0;
    return m_frame_buffer->color_buffer()->scanline(y)[x];
}

DepthType Device::get_depthbuffer_value(int x, int y)
{
    // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
    if (!m_frame_buffer->rect().contains(x, y))
        return 1.0f;
    return m_frame_buffer->depth_buffer()->scanline(y)[x];
}

NonnullRefPtr<Image> Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers)
{
    VERIFY(format == ImageFormat::BGRA8888);
    VERIFY(width > 0);
    VERIFY(height > 0);
    VERIFY(depth > 0);
    VERIFY(levels > 0);
    VERIFY(layers > 0);

    return adopt_ref(*new Image(width, height, depth, levels, layers));
}

void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config)
{
    m_samplers[sampler].set_config(config);
}

void Device::set_light_state(unsigned int light_id, Light const& light)
{
    m_lights.at(light_id) = light;
}

void Device::set_material_state(Face face, Material const& material)
{
    m_materials[face] = material;
}

void Device::set_stencil_configuration(Face face, StencilConfiguration const& stencil_configuration)
{
    m_stencil_configuration[face] = stencil_configuration;
}

void Device::set_raster_position(RasterPosition const& raster_position)
{
    m_raster_position = raster_position;
}

void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform)
{
    auto const eye_coordinates = model_view_transform * position;
    auto const clip_coordinates = projection_transform * eye_coordinates;

    // FIXME: implement clipping
    m_raster_position.valid = true;

    auto ndc_coordinates = clip_coordinates / clip_coordinates.w();
    ndc_coordinates.set_w(clip_coordinates.w());

    auto const viewport = m_options.viewport;
    auto const viewport_half_width = viewport.width() / 2.0f;
    auto const viewport_half_height = viewport.height() / 2.0f;
    auto const viewport_center_x = viewport.x() + viewport_half_width;
    auto const viewport_center_y = viewport.y() + viewport_half_height;
    auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
    auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;

    // FIXME: implement other raster position properties such as color and texcoords

    m_raster_position.window_coordinates = {
        viewport_center_x + ndc_coordinates.x() * viewport_half_width,
        viewport_center_y + ndc_coordinates.y() * viewport_half_height,
        depth_halfway + ndc_coordinates.z() * depth_half_range,
        ndc_coordinates.w(),
    };

    m_raster_position.eye_coordinate_distance = eye_coordinates.length();
}

Gfx::IntRect Device::get_rasterization_rect_of_size(Gfx::IntSize size)
{
    // Round the X and Y floating point coordinates to the nearest integer; OpenGL 1.5 spec:
    // "Any fragments whose centers lie inside of this rectangle (or on its bottom or left
    // boundaries) are produced in correspondence with this particular group of elements."
    return {
        static_cast<int>(lroundf(m_raster_position.window_coordinates.x())),
        static_cast<int>(lroundf(m_raster_position.window_coordinates.y())),
        size.width(),
        size.height(),
    };
}

}