summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibRegex/RegexOptimizer.cpp
blob: 78f7017f58b3844c9b7ece9072b14755e34cca04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/*
 * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/QuickSort.h>
#include <AK/RedBlackTree.h>
#include <AK/Stack.h>
#include <LibRegex/Regex.h>
#include <LibRegex/RegexBytecodeStreamOptimizer.h>
#if REGEX_DEBUG
#    include <AK/ScopeGuard.h>
#    include <AK/ScopeLogger.h>
#endif

namespace regex {

using Detail::Block;

template<typename Parser>
void Regex<Parser>::run_optimization_passes()
{
    parser_result.bytecode.flatten();

    // Rewrite fork loops as atomic groups
    // e.g. a*b -> (ATOMIC a*)b
    attempt_rewrite_loops_as_atomic_groups(split_basic_blocks(parser_result.bytecode));

    parser_result.bytecode.flatten();
}

template<typename Parser>
typename Regex<Parser>::BasicBlockList Regex<Parser>::split_basic_blocks(ByteCode const& bytecode)
{
    BasicBlockList block_boundaries;
    size_t end_of_last_block = 0;

    auto bytecode_size = bytecode.size();

    MatchState state;
    state.instruction_position = 0;
    auto check_jump = [&]<typename T>(OpCode const& opcode) {
        auto& op = static_cast<T const&>(opcode);
        ssize_t jump_offset = op.size() + op.offset();
        if (jump_offset >= 0) {
            block_boundaries.append({ end_of_last_block, state.instruction_position });
            end_of_last_block = state.instruction_position + opcode.size();
        } else {
            // This op jumps back, see if that's within this "block".
            if (jump_offset + state.instruction_position > end_of_last_block) {
                // Split the block!
                block_boundaries.append({ end_of_last_block, jump_offset + state.instruction_position });
                block_boundaries.append({ jump_offset + state.instruction_position, state.instruction_position });
                end_of_last_block = state.instruction_position + opcode.size();
            } else {
                // Nope, it's just a jump to another block
                block_boundaries.append({ end_of_last_block, state.instruction_position });
                end_of_last_block = state.instruction_position + opcode.size();
            }
        }
    };
    for (;;) {
        auto& opcode = bytecode.get_opcode(state);

        switch (opcode.opcode_id()) {
        case OpCodeId::Jump:
            check_jump.template operator()<OpCode_Jump>(opcode);
            break;
        case OpCodeId::JumpNonEmpty:
            check_jump.template operator()<OpCode_JumpNonEmpty>(opcode);
            break;
        case OpCodeId::ForkJump:
            check_jump.template operator()<OpCode_ForkJump>(opcode);
            break;
        case OpCodeId::ForkStay:
            check_jump.template operator()<OpCode_ForkStay>(opcode);
            break;
        case OpCodeId::FailForks:
            block_boundaries.append({ end_of_last_block, state.instruction_position });
            end_of_last_block = state.instruction_position + opcode.size();
            break;
        case OpCodeId::Repeat: {
            // Repeat produces two blocks, one containing its repeated expr, and one after that.
            auto repeat_start = state.instruction_position - static_cast<OpCode_Repeat const&>(opcode).offset();
            if (repeat_start > end_of_last_block)
                block_boundaries.append({ end_of_last_block, repeat_start });
            block_boundaries.append({ repeat_start, state.instruction_position });
            end_of_last_block = state.instruction_position + opcode.size();
            break;
        }
        default:
            break;
        }

        auto next_ip = state.instruction_position + opcode.size();
        if (next_ip < bytecode_size)
            state.instruction_position = next_ip;
        else
            break;
    }

    if (end_of_last_block < bytecode_size)
        block_boundaries.append({ end_of_last_block, bytecode_size });

    quick_sort(block_boundaries, [](auto& a, auto& b) { return a.start < b.start; });

    return block_boundaries;
}

static bool has_overlap(Vector<CompareTypeAndValuePair> const& lhs, Vector<CompareTypeAndValuePair> const& rhs)
{

    // We have to fully interpret the two sequences to determine if they overlap (that is, keep track of inversion state and what ranges they cover).
    bool inverse { false };
    bool temporary_inverse { false };
    bool reset_temporary_inverse { false };

    auto current_lhs_inversion_state = [&]() -> bool { return temporary_inverse ^ inverse; };

    RedBlackTree<u32, u32> lhs_ranges;
    RedBlackTree<u32, u32> lhs_negated_ranges;
    HashTable<CharClass> lhs_char_classes;
    HashTable<CharClass> lhs_negated_char_classes;

    auto range_contains = [&]<typename T>(T& value) -> bool {
        u32 start;
        u32 end;

        if constexpr (IsSame<T, CharRange>) {
            start = value.from;
            end = value.to;
        } else {
            start = value;
            end = value;
        }

        auto* max = lhs_ranges.find_smallest_not_below(start);
        return max && *max <= end;
    };

    auto char_class_contains = [&](CharClass const& value) -> bool {
        if (lhs_char_classes.contains(value))
            return true;

        if (lhs_negated_char_classes.contains(value))
            return false;

        // This char class might match something in the ranges we have, and checking that is far too expensive, so just bail out.
        return true;
    };

    for (auto const& pair : lhs) {
        if (reset_temporary_inverse) {
            reset_temporary_inverse = false;
            temporary_inverse = false;
        } else {
            reset_temporary_inverse = true;
        }

        switch (pair.type) {
        case CharacterCompareType::Inverse:
            inverse = !inverse;
            break;
        case CharacterCompareType::TemporaryInverse:
            temporary_inverse = !temporary_inverse;
            break;
        case CharacterCompareType::AnyChar:
            // Special case: if not inverted, AnyChar is always in the range.
            if (!current_lhs_inversion_state())
                return true;
            break;
        case CharacterCompareType::Char:
            if (!current_lhs_inversion_state())
                lhs_ranges.insert(pair.value, pair.value);
            else
                lhs_negated_ranges.insert(pair.value, pair.value);
            break;
        case CharacterCompareType::String:
            // FIXME: We just need to look at the last character of this string, but we only have the first character here.
            //        Just bail out to avoid false positives.
            return true;
        case CharacterCompareType::CharClass:
            if (!current_lhs_inversion_state())
                lhs_char_classes.set(static_cast<CharClass>(pair.value));
            else
                lhs_negated_char_classes.set(static_cast<CharClass>(pair.value));
            break;
        case CharacterCompareType::CharRange: {
            auto range = CharRange(pair.value);
            if (!current_lhs_inversion_state())
                lhs_ranges.insert(range.from, range.to);
            else
                lhs_negated_ranges.insert(range.from, range.to);
            break;
        }
        case CharacterCompareType::LookupTable:
            // We've transformed this into a series of ranges in flat_compares(), so bail out if we see it.
            return true;
        case CharacterCompareType::Reference:
            // We've handled this before coming here.
            break;
        case CharacterCompareType::Property:
        case CharacterCompareType::GeneralCategory:
        case CharacterCompareType::Script:
        case CharacterCompareType::ScriptExtension:
            // FIXME: These are too difficult to handle, so bail out.
            return true;
        case CharacterCompareType::Undefined:
        case CharacterCompareType::RangeExpressionDummy:
            // These do not occur in valid bytecode.
            VERIFY_NOT_REACHED();
        }
    }

    if constexpr (REGEX_DEBUG) {
        dbgln("lhs ranges:");
        for (auto it = lhs_ranges.begin(); it != lhs_ranges.end(); ++it)
            dbgln("  {}..{}", it.key(), *it);
        dbgln("lhs negated ranges:");
        for (auto it = lhs_negated_ranges.begin(); it != lhs_negated_ranges.end(); ++it)
            dbgln("  {}..{}", it.key(), *it);
    }

    for (auto const& pair : rhs) {
        if (reset_temporary_inverse) {
            reset_temporary_inverse = false;
            temporary_inverse = false;
        } else {
            reset_temporary_inverse = true;
        }

        dbgln_if(REGEX_DEBUG, "check {} ({})...", character_compare_type_name(pair.type), pair.value);

        switch (pair.type) {
        case CharacterCompareType::Inverse:
            inverse = !inverse;
            break;
        case CharacterCompareType::TemporaryInverse:
            temporary_inverse = !temporary_inverse;
            break;
        case CharacterCompareType::AnyChar:
            // Special case: if not inverted, AnyChar is always in the range.
            if (!current_lhs_inversion_state())
                return true;
            break;
        case CharacterCompareType::Char:
            if (!current_lhs_inversion_state() && range_contains(pair.value))
                return true;
            break;
        case CharacterCompareType::String:
            // FIXME: We just need to look at the last character of this string, but we only have the first character here.
            //        Just bail out to avoid false positives.
            return true;
        case CharacterCompareType::CharClass:
            if (!current_lhs_inversion_state() && char_class_contains(static_cast<CharClass>(pair.value)))
                return true;
            break;
        case CharacterCompareType::CharRange: {
            auto range = CharRange(pair.value);
            if (!current_lhs_inversion_state() && range_contains(range))
                return true;
            break;
        }
        case CharacterCompareType::LookupTable:
            // We've transformed this into a series of ranges in flat_compares(), so bail out if we see it.
            return true;
        case CharacterCompareType::Reference:
            // We've handled this before coming here.
            break;
        case CharacterCompareType::Property:
        case CharacterCompareType::GeneralCategory:
        case CharacterCompareType::Script:
        case CharacterCompareType::ScriptExtension:
            // FIXME: These are too difficult to handle, so bail out.
            return true;
        case CharacterCompareType::Undefined:
        case CharacterCompareType::RangeExpressionDummy:
            // These do not occur in valid bytecode.
            VERIFY_NOT_REACHED();
        }
    }

    return false;
}

enum class AtomicRewritePreconditionResult {
    SatisfiedWithProperHeader,
    SatisfiedWithEmptyHeader,
    NotSatisfied,
};
static AtomicRewritePreconditionResult block_satisfies_atomic_rewrite_precondition(ByteCode const& bytecode, Block const& repeated_block, Block const& following_block)
{
    Vector<Vector<CompareTypeAndValuePair>> repeated_values;
    HashTable<size_t> active_capture_groups;
    MatchState state;
    for (state.instruction_position = repeated_block.start; state.instruction_position < repeated_block.end;) {
        auto& opcode = bytecode.get_opcode(state);
        switch (opcode.opcode_id()) {
        case OpCodeId::Compare: {
            auto compares = static_cast<OpCode_Compare const&>(opcode).flat_compares();
            if (repeated_values.is_empty() && any_of(compares, [](auto& compare) { return compare.type == CharacterCompareType::AnyChar; }))
                return AtomicRewritePreconditionResult::NotSatisfied;
            repeated_values.append(move(compares));
            break;
        }
        case OpCodeId::CheckBegin:
        case OpCodeId::CheckEnd:
            if (repeated_values.is_empty())
                return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
            break;
        case OpCodeId::CheckBoundary:
            // FIXME: What should we do with these? for now, let's fail.
            return AtomicRewritePreconditionResult::NotSatisfied;
        case OpCodeId::Restore:
        case OpCodeId::GoBack:
            return AtomicRewritePreconditionResult::NotSatisfied;
        case OpCodeId::SaveRightCaptureGroup:
            active_capture_groups.set(static_cast<OpCode_SaveRightCaptureGroup const&>(opcode).id());
            break;
        case OpCodeId::SaveLeftCaptureGroup:
            active_capture_groups.set(static_cast<OpCode_SaveLeftCaptureGroup const&>(opcode).id());
            break;
        default:
            break;
        }

        state.instruction_position += opcode.size();
    }
    dbgln_if(REGEX_DEBUG, "Found {} entries in reference", repeated_values.size());
    dbgln_if(REGEX_DEBUG, "Found {} active capture groups", active_capture_groups.size());

    bool following_block_has_at_least_one_compare = false;
    // Find the first compare in the following block, it must NOT match any of the values in `repeated_values'.
    for (state.instruction_position = following_block.start; state.instruction_position < following_block.end;) {
        auto& opcode = bytecode.get_opcode(state);
        switch (opcode.opcode_id()) {
        // Note: These have to exist since we're effectively repeating the following block as well
        case OpCodeId::SaveRightCaptureGroup:
            active_capture_groups.set(static_cast<OpCode_SaveRightCaptureGroup const&>(opcode).id());
            break;
        case OpCodeId::SaveLeftCaptureGroup:
            active_capture_groups.set(static_cast<OpCode_SaveLeftCaptureGroup const&>(opcode).id());
            break;
        case OpCodeId::Compare: {
            following_block_has_at_least_one_compare = true;
            // We found a compare, let's see what it has.
            auto compares = static_cast<OpCode_Compare const&>(opcode).flat_compares();
            if (compares.is_empty())
                break;

            if (any_of(compares, [&](auto& compare) {
                    return compare.type == CharacterCompareType::AnyChar
                        || (compare.type == CharacterCompareType::Reference && active_capture_groups.contains(compare.value));
                }))
                return AtomicRewritePreconditionResult::NotSatisfied;

            if (any_of(repeated_values, [&](auto& repeated_value) { return has_overlap(compares, repeated_value); }))
                return AtomicRewritePreconditionResult::NotSatisfied;

            return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
        }
        case OpCodeId::CheckBegin:
        case OpCodeId::CheckEnd:
            return AtomicRewritePreconditionResult::SatisfiedWithProperHeader; // Nothing can match the end!
        case OpCodeId::CheckBoundary:
            // FIXME: What should we do with these? For now, consider them a failure.
            return AtomicRewritePreconditionResult::NotSatisfied;
        default:
            break;
        }

        state.instruction_position += opcode.size();
    }

    if (following_block_has_at_least_one_compare)
        return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
    return AtomicRewritePreconditionResult::SatisfiedWithEmptyHeader;
}

template<typename Parser>
void Regex<Parser>::attempt_rewrite_loops_as_atomic_groups(BasicBlockList const& basic_blocks)
{
    auto& bytecode = parser_result.bytecode;
    if constexpr (REGEX_DEBUG) {
        RegexDebug dbg;
        dbg.print_bytecode(*this);
        for (auto const& block : basic_blocks)
            dbgln("block from {} to {}", block.start, block.end);
    }

    // A pattern such as:
    //     bb0       |  RE0
    //               |  ForkX bb0
    //     -------------------------
    //     bb1       |  RE1
    // can be rewritten as:
    //     -------------------------
    //     bb0       | RE0
    //               | ForkReplaceX bb0
    //     -------------------------
    //     bb1       | RE1
    // provided that first(RE1) not-in end(RE0), which is to say
    // that RE1 cannot start with whatever RE0 has matched (ever).
    //
    // Alternatively, a second form of this pattern can also occur:
    //     bb0 | *
    //         | ForkX bb2
    //     ------------------------
    //     bb1 | RE0
    //         | Jump bb0
    //     ------------------------
    //     bb2 | RE1
    // which can be transformed (with the same preconditions) to:
    //     bb0 | *
    //         | ForkReplaceX bb2
    //     ------------------------
    //     bb1 | RE0
    //         | Jump bb0
    //     ------------------------
    //     bb2 | RE1

    enum class AlternateForm {
        DirectLoopWithoutHeader,               // loop without proper header, a block forking to itself. i.e. the first form.
        DirectLoopWithoutHeaderAndEmptyFollow, // loop without proper header, a block forking to itself. i.e. the first form but with RE1 being empty.
        DirectLoopWithHeader,                  // loop with proper header, i.e. the second form.
    };
    struct CandidateBlock {
        Block forking_block;
        Optional<Block> new_target_block;
        AlternateForm form;
    };
    Vector<CandidateBlock> candidate_blocks;

    auto is_an_eligible_jump = [](OpCode const& opcode, size_t ip, size_t block_start, AlternateForm alternate_form) {
        switch (opcode.opcode_id()) {
        case OpCodeId::JumpNonEmpty: {
            auto const& op = static_cast<OpCode_JumpNonEmpty const&>(opcode);
            auto form = op.form();
            if (form != OpCodeId::Jump && alternate_form == AlternateForm::DirectLoopWithHeader)
                return false;
            if (form != OpCodeId::ForkJump && form != OpCodeId::ForkStay && alternate_form == AlternateForm::DirectLoopWithoutHeader)
                return false;
            return op.offset() + ip + opcode.size() == block_start;
        }
        case OpCodeId::ForkJump:
            if (alternate_form == AlternateForm::DirectLoopWithHeader)
                return false;
            return static_cast<OpCode_ForkJump const&>(opcode).offset() + ip + opcode.size() == block_start;
        case OpCodeId::ForkStay:
            if (alternate_form == AlternateForm::DirectLoopWithHeader)
                return false;
            return static_cast<OpCode_ForkStay const&>(opcode).offset() + ip + opcode.size() == block_start;
        case OpCodeId::Jump:
            // Infinite loop does *not* produce forks.
            if (alternate_form == AlternateForm::DirectLoopWithoutHeader)
                return false;
            if (alternate_form == AlternateForm::DirectLoopWithHeader)
                return static_cast<OpCode_Jump const&>(opcode).offset() + ip + opcode.size() == block_start;
            VERIFY_NOT_REACHED();
        default:
            return false;
        }
    };
    for (size_t i = 0; i < basic_blocks.size(); ++i) {
        auto forking_block = basic_blocks[i];
        Optional<Block> fork_fallback_block;
        if (i + 1 < basic_blocks.size())
            fork_fallback_block = basic_blocks[i + 1];
        MatchState state;
        // Check if the last instruction in this block is a jump to the block itself:
        {
            state.instruction_position = forking_block.end;
            auto& opcode = bytecode.get_opcode(state);
            if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.start, AlternateForm::DirectLoopWithoutHeader)) {
                // We've found RE0 (and RE1 is just the following block, if any), let's see if the precondition applies.
                // if RE1 is empty, there's no first(RE1), so this is an automatic pass.
                if (!fork_fallback_block.has_value() || fork_fallback_block->end == fork_fallback_block->start) {
                    candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeader });
                    break;
                }

                auto precondition = block_satisfies_atomic_rewrite_precondition(bytecode, forking_block, *fork_fallback_block);
                if (precondition == AtomicRewritePreconditionResult::SatisfiedWithProperHeader) {
                    candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeader });
                    break;
                }
                if (precondition == AtomicRewritePreconditionResult::SatisfiedWithEmptyHeader) {
                    candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeaderAndEmptyFollow });
                    break;
                }
            }
        }
        // Check if the last instruction in the last block is a direct jump to this block
        if (fork_fallback_block.has_value()) {
            state.instruction_position = fork_fallback_block->end;
            auto& opcode = bytecode.get_opcode(state);
            if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.start, AlternateForm::DirectLoopWithHeader)) {
                // We've found bb1 and bb0, let's just make sure that bb0 forks to bb2.
                state.instruction_position = forking_block.end;
                auto& opcode = bytecode.get_opcode(state);
                if (opcode.opcode_id() == OpCodeId::ForkJump || opcode.opcode_id() == OpCodeId::ForkStay) {
                    Optional<Block> block_following_fork_fallback;
                    if (i + 2 < basic_blocks.size())
                        block_following_fork_fallback = basic_blocks[i + 2];
                    if (!block_following_fork_fallback.has_value()
                        || block_satisfies_atomic_rewrite_precondition(bytecode, *fork_fallback_block, *block_following_fork_fallback) != AtomicRewritePreconditionResult::NotSatisfied) {
                        candidate_blocks.append({ forking_block, {}, AlternateForm::DirectLoopWithHeader });
                        break;
                    }
                }
            }
        }
    }

    dbgln_if(REGEX_DEBUG, "Found {} candidate blocks", candidate_blocks.size());
    if (candidate_blocks.is_empty()) {
        dbgln_if(REGEX_DEBUG, "Failed to find anything for {}", pattern_value);
        return;
    }

    RedBlackTree<size_t, size_t> needed_patches;

    // Reverse the blocks, so we can patch the bytecode without messing with the latter patches.
    quick_sort(candidate_blocks, [](auto& a, auto& b) { return b.forking_block.start > a.forking_block.start; });
    for (auto& candidate : candidate_blocks) {
        // Note that both forms share a ForkReplace patch in forking_block.
        // Patch the ForkX in forking_block to be a ForkReplaceX instead.
        auto& opcode_id = bytecode[candidate.forking_block.end];
        if (opcode_id == (ByteCodeValueType)OpCodeId::ForkStay) {
            opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceStay;
        } else if (opcode_id == (ByteCodeValueType)OpCodeId::ForkJump) {
            opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceJump;
        } else if (opcode_id == (ByteCodeValueType)OpCodeId::JumpNonEmpty) {
            auto& jump_opcode_id = bytecode[candidate.forking_block.end + 3];
            if (jump_opcode_id == (ByteCodeValueType)OpCodeId::ForkStay)
                jump_opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceStay;
            else if (jump_opcode_id == (ByteCodeValueType)OpCodeId::ForkJump)
                jump_opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceJump;
            else
                VERIFY_NOT_REACHED();
        } else {
            VERIFY_NOT_REACHED();
        }
    }

    if (!needed_patches.is_empty()) {
        MatchState state;
        auto bytecode_size = bytecode.size();
        state.instruction_position = 0;
        struct Patch {
            ssize_t value;
            size_t offset;
            bool should_negate { false };
        };
        for (;;) {
            if (state.instruction_position >= bytecode_size)
                break;

            auto& opcode = bytecode.get_opcode(state);
            Stack<Patch, 2> patch_points;

            switch (opcode.opcode_id()) {
            case OpCodeId::Jump:
                patch_points.push({ static_cast<OpCode_Jump const&>(opcode).offset(), state.instruction_position + 1 });
                break;
            case OpCodeId::JumpNonEmpty:
                patch_points.push({ static_cast<OpCode_JumpNonEmpty const&>(opcode).offset(), state.instruction_position + 1 });
                patch_points.push({ static_cast<OpCode_JumpNonEmpty const&>(opcode).checkpoint(), state.instruction_position + 2 });
                break;
            case OpCodeId::ForkJump:
                patch_points.push({ static_cast<OpCode_ForkJump const&>(opcode).offset(), state.instruction_position + 1 });
                break;
            case OpCodeId::ForkStay:
                patch_points.push({ static_cast<OpCode_ForkStay const&>(opcode).offset(), state.instruction_position + 1 });
                break;
            case OpCodeId::Repeat:
                patch_points.push({ -(ssize_t) static_cast<OpCode_Repeat const&>(opcode).offset(), state.instruction_position + 1, true });
                break;
            default:
                break;
            }

            while (!patch_points.is_empty()) {
                auto& patch_point = patch_points.top();
                auto target_offset = patch_point.value + state.instruction_position + opcode.size();

                constexpr auto do_patch = [](auto& patch_it, auto& patch_point, auto& target_offset, auto& bytecode, auto ip) {
                    if (patch_it.key() == ip)
                        return;

                    if (patch_point.value < 0 && target_offset <= patch_it.key() && ip > patch_it.key())
                        bytecode[patch_point.offset] += (patch_point.should_negate ? 1 : -1) * (*patch_it);
                    else if (patch_point.value > 0 && target_offset >= patch_it.key() && ip < patch_it.key())
                        bytecode[patch_point.offset] += (patch_point.should_negate ? -1 : 1) * (*patch_it);
                };

                if (auto patch_it = needed_patches.find_largest_not_above_iterator(target_offset); !patch_it.is_end())
                    do_patch(patch_it, patch_point, target_offset, bytecode, state.instruction_position);
                else if (auto patch_it = needed_patches.find_largest_not_above_iterator(state.instruction_position); !patch_it.is_end())
                    do_patch(patch_it, patch_point, target_offset, bytecode, state.instruction_position);

                patch_points.pop();
            }

            state.instruction_position += opcode.size();
        }
    }

    if constexpr (REGEX_DEBUG) {
        warnln("Transformed to:");
        RegexDebug dbg;
        dbg.print_bytecode(*this);
    }
}

void Optimizer::append_alternation(ByteCode& target, ByteCode&& left, ByteCode&& right)
{
    Array<ByteCode, 2> alternatives;
    alternatives[0] = move(left);
    alternatives[1] = move(right);

    append_alternation(target, alternatives);
}

void Optimizer::append_alternation(ByteCode& target, Span<ByteCode> alternatives)
{
    if (alternatives.size() == 0)
        return;

    if (alternatives.size() == 1)
        return target.extend(move(alternatives[0]));

    if (all_of(alternatives, [](auto& x) { return x.is_empty(); }))
        return;

    for (auto& entry : alternatives)
        entry.flatten();

#if REGEX_DEBUG
    ScopeLogger<true> log;
    warnln("Alternations:");
    RegexDebug dbg;
    for (auto& entry : alternatives) {
        warnln("----------");
        dbg.print_bytecode(entry);
    }
    ScopeGuard print_at_end {
        [&] {
            warnln("======================");
            RegexDebug dbg;
            dbg.print_bytecode(target);
        }
    };
#endif

    Vector<Vector<Detail::Block>> basic_blocks;
    basic_blocks.ensure_capacity(alternatives.size());

    for (auto& entry : alternatives)
        basic_blocks.append(Regex<PosixBasicParser>::split_basic_blocks(entry));

    size_t left_skip = 0;
    size_t shared_block_count = basic_blocks.first().size();
    for (auto& entry : basic_blocks)
        shared_block_count = min(shared_block_count, entry.size());

    MatchState state;
    for (size_t block_index = 0; block_index < shared_block_count; block_index++) {
        auto& left_block = basic_blocks.first()[block_index];
        auto left_end = block_index + 1 == basic_blocks.first().size() ? left_block.end : basic_blocks.first()[block_index + 1].start;
        auto can_continue = true;
        for (size_t i = 1; i < alternatives.size(); ++i) {
            auto& right_blocks = basic_blocks[i];
            auto& right_block = right_blocks[block_index];
            auto right_end = block_index + 1 == right_blocks.size() ? right_block.end : right_blocks[block_index + 1].start;

            if (left_end - left_block.start != right_end - right_block.start) {
                can_continue = false;
                break;
            }

            if (alternatives[0].spans().slice(left_block.start, left_end - left_block.start) != alternatives[i].spans().slice(right_block.start, right_end - right_block.start)) {
                can_continue = false;
                break;
            }
        }
        if (!can_continue)
            break;

        size_t i = 0;
        for (auto& entry : alternatives) {
            auto& blocks = basic_blocks[i];
            auto& block = blocks[block_index];
            auto end = block_index + 1 == blocks.size() ? block.end : blocks[block_index + 1].start;
            state.instruction_position = block.start;
            size_t skip = 0;
            while (state.instruction_position < end) {
                auto& opcode = entry.get_opcode(state);
                state.instruction_position += opcode.size();
                skip = state.instruction_position;
            }
            left_skip = min(skip, left_skip);
        }
    }

    dbgln_if(REGEX_DEBUG, "Skipping {}/{} bytecode entries from {}", left_skip, 0, alternatives[0].size());

    if (left_skip > 0) {
        target.extend(alternatives[0].release_slice(basic_blocks.first().first().start, left_skip));
        auto first = true;
        for (auto& entry : alternatives) {
            if (first) {
                first = false;
                continue;
            }
            entry = entry.release_slice(left_skip);
        }
    }

    if (all_of(alternatives, [](auto& entry) { return entry.is_empty(); }))
        return;

    size_t patch_start = target.size();
    for (size_t i = 1; i < alternatives.size(); ++i) {
        target.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
        target.empend(0u); // To be filled later.
    }

    size_t size_to_jump = 0;
    bool seen_one_empty = false;
    for (size_t i = alternatives.size(); i > 0; --i) {
        auto& entry = alternatives[i - 1];
        if (entry.is_empty()) {
            if (seen_one_empty)
                continue;
            seen_one_empty = true;
        }

        auto is_first = i == 1;
        auto instruction_size = entry.size() + (is_first ? 0 : 2); // Jump; -> +2
        size_to_jump += instruction_size;

        if (!is_first)
            target[patch_start + (i - 2) * 2 + 1] = size_to_jump + (alternatives.size() - i) * 2;

        dbgln_if(REGEX_DEBUG, "{} size = {}, cum={}", i - 1, instruction_size, size_to_jump);
    }

    seen_one_empty = false;
    for (size_t i = alternatives.size(); i > 0; --i) {
        auto& chunk = alternatives[i - 1];
        if (chunk.is_empty()) {
            if (seen_one_empty)
                continue;
            seen_one_empty = true;
        }

        ByteCode* previous_chunk = nullptr;
        size_t j = i - 1;
        auto seen_one_empty_before = chunk.is_empty();
        while (j >= 1) {
            --j;
            auto& candidate_chunk = alternatives[j];
            if (candidate_chunk.is_empty()) {
                if (seen_one_empty_before)
                    continue;
            }
            previous_chunk = &candidate_chunk;
            break;
        }

        size_to_jump -= chunk.size() + (previous_chunk ? 2 : 0);

        target.extend(move(chunk));
        target.empend(static_cast<ByteCodeValueType>(OpCodeId::Jump));
        target.empend(size_to_jump); // Jump to the _END label
    }
}

enum class LookupTableInsertionOutcome {
    Successful,
    ReplaceWithAnyChar,
    TemporaryInversionNeeded,
    PermanentInversionNeeded,
    CannotPlaceInTable,
};
static LookupTableInsertionOutcome insert_into_lookup_table(RedBlackTree<ByteCodeValueType, CharRange>& table, CompareTypeAndValuePair pair)
{
    switch (pair.type) {
    case CharacterCompareType::Inverse:
        return LookupTableInsertionOutcome::PermanentInversionNeeded;
    case CharacterCompareType::TemporaryInverse:
        return LookupTableInsertionOutcome::TemporaryInversionNeeded;
    case CharacterCompareType::AnyChar:
        return LookupTableInsertionOutcome::ReplaceWithAnyChar;
    case CharacterCompareType::CharClass:
        return LookupTableInsertionOutcome::CannotPlaceInTable;
    case CharacterCompareType::Char:
        table.insert(pair.value, { (u32)pair.value, (u32)pair.value });
        break;
    case CharacterCompareType::CharRange: {
        CharRange range { pair.value };
        table.insert(range.from, range);
        break;
    }
    case CharacterCompareType::Reference:
    case CharacterCompareType::Property:
    case CharacterCompareType::GeneralCategory:
    case CharacterCompareType::Script:
    case CharacterCompareType::ScriptExtension:
        return LookupTableInsertionOutcome::CannotPlaceInTable;
    case CharacterCompareType::Undefined:
    case CharacterCompareType::RangeExpressionDummy:
    case CharacterCompareType::String:
    case CharacterCompareType::LookupTable:
        VERIFY_NOT_REACHED();
    }

    return LookupTableInsertionOutcome::Successful;
}

void Optimizer::append_character_class(ByteCode& target, Vector<CompareTypeAndValuePair>&& pairs)
{
    ByteCode arguments;
    size_t argument_count = 0;

    if (pairs.size() <= 1) {
        for (auto& pair : pairs) {
            arguments.append(to_underlying(pair.type));
            if (pair.type != CharacterCompareType::AnyChar && pair.type != CharacterCompareType::TemporaryInverse && pair.type != CharacterCompareType::Inverse)
                arguments.append(pair.value);
            ++argument_count;
        }
    } else {
        RedBlackTree<ByteCodeValueType, CharRange> table;
        RedBlackTree<ByteCodeValueType, CharRange> inverted_table;
        auto* current_table = &table;
        auto* current_inverted_table = &inverted_table;
        bool invert_for_next_iteration = false;
        bool is_currently_inverted = false;

        for (auto& value : pairs) {
            auto should_invert_after_this_iteration = invert_for_next_iteration;
            invert_for_next_iteration = false;

            auto insertion_result = insert_into_lookup_table(*current_table, value);
            switch (insertion_result) {
            case LookupTableInsertionOutcome::Successful:
                break;
            case LookupTableInsertionOutcome::ReplaceWithAnyChar: {
                table.clear();
                inverted_table.clear();
                arguments.append(to_underlying(CharacterCompareType::AnyChar));
                ++argument_count;
                break;
            }
            case LookupTableInsertionOutcome::TemporaryInversionNeeded:
                swap(current_table, current_inverted_table);
                invert_for_next_iteration = true;
                is_currently_inverted = !is_currently_inverted;
                break;
            case LookupTableInsertionOutcome::PermanentInversionNeeded:
                swap(current_table, current_inverted_table);
                is_currently_inverted = !is_currently_inverted;
                break;
            case LookupTableInsertionOutcome::CannotPlaceInTable:
                if (is_currently_inverted) {
                    arguments.append(to_underlying(CharacterCompareType::TemporaryInverse));
                    ++argument_count;
                }
                arguments.append(to_underlying(value.type));
                arguments.append(value.value);
                ++argument_count;
                break;
            }

            if (should_invert_after_this_iteration) {
                swap(current_table, current_inverted_table);
                is_currently_inverted = !is_currently_inverted;
            }
        }
        auto append_table = [&](auto& table) {
            ++argument_count;
            arguments.append(to_underlying(CharacterCompareType::LookupTable));
            auto size_index = arguments.size();
            arguments.append(0);
            Optional<CharRange> active_range;
            size_t range_count = 0;
            for (auto& range : table) {
                if (!active_range.has_value()) {
                    active_range = range;
                    continue;
                }

                if (range.from <= active_range->to + 1 && range.to + 1 >= active_range->from) {
                    active_range = CharRange { min(range.from, active_range->from), max(range.to, active_range->to) };
                } else {
                    ++range_count;
                    arguments.append(active_range.release_value());
                    active_range = range;
                }
            }
            if (active_range.has_value()) {
                ++range_count;
                arguments.append(active_range.release_value());
            }
            arguments[size_index] = range_count;
        };

        if (!table.is_empty())
            append_table(table);

        if (!inverted_table.is_empty()) {
            ++argument_count;
            arguments.append(to_underlying(CharacterCompareType::TemporaryInverse));
            append_table(inverted_table);
        }
    }

    target.empend(static_cast<ByteCodeValueType>(OpCodeId::Compare));
    target.empend(argument_count);   // number of arguments
    target.empend(arguments.size()); // size of arguments
    target.extend(move(arguments));
}

template void Regex<PosixBasicParser>::run_optimization_passes();
template void Regex<PosixExtendedParser>::run_optimization_passes();
template void Regex<ECMA262Parser>::run_optimization_passes();
}