1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/BitCast.h>
#include <AK/DeprecatedString.h>
#include <AK/Format.h>
#include <AK/Forward.h>
#include <AK/Function.h>
#include <AK/Result.h>
#include <AK/String.h>
#include <AK/Types.h>
#include <LibJS/Forward.h>
#include <LibJS/Heap/GCPtr.h>
#include <LibJS/Runtime/BigInt.h>
#include <math.h>
// 2 ** 53 - 1
static constexpr double MAX_ARRAY_LIKE_INDEX = 9007199254740991.0;
// Unique bit representation of negative zero (only sign bit set)
static constexpr u64 NEGATIVE_ZERO_BITS = ((u64)1 << 63);
namespace JS {
static_assert(sizeof(double) == 8);
static_assert(sizeof(void*) == sizeof(double) || sizeof(void*) == sizeof(u32));
// To make our Value representation compact we can use the fact that IEEE
// doubles have a lot (2^52 - 2) of NaN bit patterns. The canonical form being
// just 0x7FF8000000000000 i.e. sign = 0 exponent is all ones and the top most
// bit of the mantissa set.
static constexpr u64 CANON_NAN_BITS = bit_cast<u64>(__builtin_nan(""));
static_assert(CANON_NAN_BITS == 0x7FF8000000000000);
// (Unfortunately all the other values are valid so we have to convert any
// incoming NaNs to this pattern although in practice it seems only the negative
// version of these CANON_NAN_BITS)
// +/- Infinity are represented by a full exponent but without any bits of the
// mantissa set.
static constexpr u64 POSITIVE_INFINITY_BITS = bit_cast<u64>(__builtin_huge_val());
static constexpr u64 NEGATIVE_INFINITY_BITS = bit_cast<u64>(-__builtin_huge_val());
static_assert(POSITIVE_INFINITY_BITS == 0x7FF0000000000000);
static_assert(NEGATIVE_INFINITY_BITS == 0xFFF0000000000000);
// However as long as any bit is set in the mantissa with the exponent of all
// ones this value is a NaN, and it even ignores the sign bit.
// (NOTE: we have to use __builtin_isnan here since some isnan implementations are not constexpr)
static_assert(__builtin_isnan(bit_cast<double>(0x7FF0000000000001)));
static_assert(__builtin_isnan(bit_cast<double>(0xFFF0000000040000)));
// This means we can use all of these NaNs to store all other options for Value.
// To make sure all of these other representations we use 0x7FF8 as the base top
// 2 bytes which ensures the value is always a NaN.
static constexpr u64 BASE_TAG = 0x7FF8;
// This leaves the sign bit and the three lower bits for tagging a value and then
// 48 bits of potential payload.
// First the pointer backed types (Object, String etc.), to signify this category
// and make stack scanning easier we use the sign bit (top most bit) of 1 to
// signify that it is a pointer backed type.
static constexpr u64 IS_CELL_BIT = 0x8000 | BASE_TAG;
// On all current 64-bit systems this code runs pointer actually only use the
// lowest 6 bytes which fits neatly into our NaN payload with the top two bytes
// left over for marking it as a NaN and tagging the type.
// Note that we do need to take care when extracting the pointer value but this
// is explained in the extract_pointer method.
// This leaves us 3 bits to tag the type of pointer:
static constexpr u64 OBJECT_TAG = 0b001 | IS_CELL_BIT;
static constexpr u64 STRING_TAG = 0b010 | IS_CELL_BIT;
static constexpr u64 SYMBOL_TAG = 0b011 | IS_CELL_BIT;
static constexpr u64 ACCESSOR_TAG = 0b100 | IS_CELL_BIT;
static constexpr u64 BIGINT_TAG = 0b101 | IS_CELL_BIT;
// We can then by extracting the top 13 bits quickly check if a Value is
// pointer backed.
static constexpr u64 IS_CELL_PATTERN = 0xFFF8ULL;
static_assert((OBJECT_TAG & IS_CELL_PATTERN) == IS_CELL_PATTERN);
static_assert((STRING_TAG & IS_CELL_PATTERN) == IS_CELL_PATTERN);
static_assert((CANON_NAN_BITS & IS_CELL_PATTERN) != IS_CELL_PATTERN);
static_assert((NEGATIVE_INFINITY_BITS & IS_CELL_PATTERN) != IS_CELL_PATTERN);
// Then for the non pointer backed types we don't set the sign bit and use the
// three lower bits for tagging as well.
static constexpr u64 UNDEFINED_TAG = 0b110 | BASE_TAG;
static constexpr u64 NULL_TAG = 0b111 | BASE_TAG;
static constexpr u64 BOOLEAN_TAG = 0b001 | BASE_TAG;
static constexpr u64 INT32_TAG = 0b010 | BASE_TAG;
static constexpr u64 EMPTY_TAG = 0b011 | BASE_TAG;
// Notice how only undefined and null have the top bit set, this mean we can
// quickly check for nullish values by checking if the top and bottom bits are set
// but the middle one isn't.
static constexpr u64 IS_NULLISH_EXTRACT_PATTERN = 0xFFFEULL;
static constexpr u64 IS_NULLISH_PATTERN = 0x7FFEULL;
static_assert((UNDEFINED_TAG & IS_NULLISH_EXTRACT_PATTERN) == IS_NULLISH_PATTERN);
static_assert((NULL_TAG & IS_NULLISH_EXTRACT_PATTERN) == IS_NULLISH_PATTERN);
static_assert((BOOLEAN_TAG & IS_NULLISH_EXTRACT_PATTERN) != IS_NULLISH_PATTERN);
static_assert((INT32_TAG & IS_NULLISH_EXTRACT_PATTERN) != IS_NULLISH_PATTERN);
static_assert((EMPTY_TAG & IS_NULLISH_EXTRACT_PATTERN) != IS_NULLISH_PATTERN);
// We also have the empty tag to represent array holes however since empty
// values are not valid anywhere else we can use this "value" to our advantage
// in Optional<Value> to represent the empty optional.
static constexpr u64 TAG_EXTRACTION = 0xFFFF000000000000;
static constexpr u64 TAG_SHIFT = 48;
static constexpr u64 SHIFTED_INT32_TAG = INT32_TAG << TAG_SHIFT;
static constexpr u64 SHIFTED_IS_CELL_PATTERN = IS_CELL_PATTERN << TAG_SHIFT;
// Summary:
// To pack all the different value in to doubles we use the following schema:
// s = sign, e = exponent, m = mantissa
// The top part is the tag and the bottom the payload.
// 0bseeeeeeeeeeemmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
// 0b0111111111111000 0... is the only real NaN
// 0b1111111111111xxx yyy... xxx = pointer type, yyy = pointer value
// 0b0111111111111xxx yyy... xxx = non-pointer type, yyy = value or 0 if just type
// Future expansion: We are not fully utilizing all the possible bit patterns
// yet, these choices were made to make it easy to implement and understand.
// We can for example drop the always 1 top bit of the mantissa expanding our
// options from 8 tags to 15 but since we currently only use 5 for both sign bits
// this is not needed.
class Value {
public:
enum class PreferredType {
Default,
String,
Number,
};
bool is_empty() const { return m_value.tag == EMPTY_TAG; }
bool is_undefined() const { return m_value.tag == UNDEFINED_TAG; }
bool is_null() const { return m_value.tag == NULL_TAG; }
bool is_number() const { return is_double() || is_int32(); }
bool is_string() const { return m_value.tag == STRING_TAG; }
bool is_object() const { return m_value.tag == OBJECT_TAG; }
bool is_boolean() const { return m_value.tag == BOOLEAN_TAG; }
bool is_symbol() const { return m_value.tag == SYMBOL_TAG; }
bool is_accessor() const { return m_value.tag == ACCESSOR_TAG; };
bool is_bigint() const { return m_value.tag == BIGINT_TAG; };
bool is_nullish() const { return (m_value.tag & IS_NULLISH_EXTRACT_PATTERN) == IS_NULLISH_PATTERN; }
bool is_cell() const { return (m_value.tag & IS_CELL_PATTERN) == IS_CELL_PATTERN; }
ThrowCompletionOr<bool> is_array(VM&) const;
bool is_function() const;
bool is_constructor() const;
ThrowCompletionOr<bool> is_regexp(VM&) const;
bool is_nan() const
{
return m_value.encoded == CANON_NAN_BITS;
}
bool is_infinity() const
{
static_assert(NEGATIVE_INFINITY_BITS == (0x1ULL << 63 | POSITIVE_INFINITY_BITS));
return (0x1ULL << 63 | m_value.encoded) == NEGATIVE_INFINITY_BITS;
}
bool is_positive_infinity() const
{
return m_value.encoded == POSITIVE_INFINITY_BITS;
}
bool is_negative_infinity() const
{
return m_value.encoded == NEGATIVE_INFINITY_BITS;
}
bool is_positive_zero() const
{
return m_value.encoded == 0 || (is_int32() && as_i32() == 0);
}
bool is_negative_zero() const
{
return m_value.encoded == NEGATIVE_ZERO_BITS;
}
bool is_integral_number() const
{
if (is_int32())
return true;
return is_finite_number() && trunc(as_double()) == as_double();
}
bool is_finite_number() const
{
if (!is_number())
return false;
if (is_int32())
return true;
return !is_nan() && !is_infinity();
}
Value()
: Value(EMPTY_TAG << TAG_SHIFT, (u64)0)
{
}
template<typename T>
requires(IsSameIgnoringCV<T, bool>) explicit Value(T value)
: Value(BOOLEAN_TAG << TAG_SHIFT, (u64)value)
{
}
explicit Value(double value)
{
bool is_negative_zero = bit_cast<u64>(value) == NEGATIVE_ZERO_BITS;
if (value >= NumericLimits<i32>::min() && value <= NumericLimits<i32>::max() && trunc(value) == value && !is_negative_zero) {
VERIFY(!(SHIFTED_INT32_TAG & (static_cast<i32>(value) & 0xFFFFFFFFul)));
m_value.encoded = SHIFTED_INT32_TAG | (static_cast<i32>(value) & 0xFFFFFFFFul);
} else {
if (isnan(value)) [[unlikely]]
m_value.encoded = CANON_NAN_BITS;
else
m_value.as_double = value;
}
}
// NOTE: A couple of integral types are excluded here:
// - i32 has its own dedicated Value constructor
// - i64 cannot safely be cast to a double
// - bool isn't a number type and has its own dedicated Value constructor
template<typename T>
requires(IsIntegral<T> && !IsSameIgnoringCV<T, i32> && !IsSameIgnoringCV<T, i64> && !IsSameIgnoringCV<T, bool>) explicit Value(T value)
{
if (value > NumericLimits<i32>::max()) {
m_value.as_double = static_cast<double>(value);
} else {
VERIFY(!(SHIFTED_INT32_TAG & (static_cast<i32>(value) & 0xFFFFFFFFul)));
m_value.encoded = SHIFTED_INT32_TAG | (static_cast<i32>(value) & 0xFFFFFFFFul);
}
}
explicit Value(unsigned value)
{
if (value > NumericLimits<i32>::max()) {
m_value.as_double = static_cast<double>(value);
} else {
VERIFY(!(SHIFTED_INT32_TAG & (static_cast<i32>(value) & 0xFFFFFFFFul)));
m_value.encoded = SHIFTED_INT32_TAG | (static_cast<i32>(value) & 0xFFFFFFFFul);
}
}
explicit Value(i32 value)
: Value(SHIFTED_INT32_TAG, (u32)value)
{
}
Value(Object const* object)
: Value(OBJECT_TAG << TAG_SHIFT, reinterpret_cast<void const*>(object))
{
}
Value(PrimitiveString const* string)
: Value(STRING_TAG << TAG_SHIFT, reinterpret_cast<void const*>(string))
{
}
Value(Symbol const* symbol)
: Value(SYMBOL_TAG << TAG_SHIFT, reinterpret_cast<void const*>(symbol))
{
}
Value(Accessor const* accessor)
: Value(ACCESSOR_TAG << TAG_SHIFT, reinterpret_cast<void const*>(accessor))
{
}
Value(BigInt const* bigint)
: Value(BIGINT_TAG << TAG_SHIFT, reinterpret_cast<void const*>(bigint))
{
}
template<typename T>
Value(GCPtr<T> ptr)
: Value(ptr.ptr())
{
}
template<typename T>
Value(NonnullGCPtr<T> ptr)
: Value(ptr.ptr())
{
}
double as_double() const
{
VERIFY(is_number());
if (is_int32())
return as_i32();
return m_value.as_double;
}
bool as_bool() const
{
VERIFY(is_boolean());
return static_cast<bool>(m_value.encoded & 0x1);
}
Object& as_object()
{
VERIFY(is_object());
return *extract_pointer<Object>();
}
Object const& as_object() const
{
VERIFY(is_object());
return *extract_pointer<Object>();
}
PrimitiveString& as_string()
{
VERIFY(is_string());
return *extract_pointer<PrimitiveString>();
}
PrimitiveString const& as_string() const
{
VERIFY(is_string());
return *extract_pointer<PrimitiveString>();
}
Symbol& as_symbol()
{
VERIFY(is_symbol());
return *extract_pointer<Symbol>();
}
Symbol const& as_symbol() const
{
VERIFY(is_symbol());
return *extract_pointer<Symbol>();
}
Cell& as_cell()
{
VERIFY(is_cell());
return *extract_pointer<Cell>();
}
Accessor& as_accessor()
{
VERIFY(is_accessor());
return *extract_pointer<Accessor>();
}
BigInt const& as_bigint() const
{
VERIFY(is_bigint());
return *extract_pointer<BigInt>();
}
BigInt& as_bigint()
{
VERIFY(is_bigint());
return *extract_pointer<BigInt>();
}
Array& as_array();
FunctionObject& as_function();
FunctionObject const& as_function() const;
u64 encoded() const { return m_value.encoded; }
ThrowCompletionOr<DeprecatedString> to_deprecated_string(VM&) const;
ThrowCompletionOr<Utf16String> to_utf16_string(VM&) const;
ThrowCompletionOr<PrimitiveString*> to_primitive_string(VM&);
ThrowCompletionOr<Value> to_primitive(VM&, PreferredType preferred_type = PreferredType::Default) const;
ThrowCompletionOr<Object*> to_object(VM&) const;
ThrowCompletionOr<Value> to_numeric(VM&) const;
ThrowCompletionOr<Value> to_number(VM&) const;
ThrowCompletionOr<BigInt*> to_bigint(VM&) const;
ThrowCompletionOr<i64> to_bigint_int64(VM&) const;
ThrowCompletionOr<u64> to_bigint_uint64(VM&) const;
ThrowCompletionOr<double> to_double(VM&) const;
ThrowCompletionOr<PropertyKey> to_property_key(VM&) const;
ThrowCompletionOr<i32> to_i32(VM&) const;
ThrowCompletionOr<u32> to_u32(VM&) const;
ThrowCompletionOr<i16> to_i16(VM&) const;
ThrowCompletionOr<u16> to_u16(VM&) const;
ThrowCompletionOr<i8> to_i8(VM&) const;
ThrowCompletionOr<u8> to_u8(VM&) const;
ThrowCompletionOr<u8> to_u8_clamp(VM&) const;
ThrowCompletionOr<size_t> to_length(VM&) const;
ThrowCompletionOr<size_t> to_index(VM&) const;
ThrowCompletionOr<double> to_integer_or_infinity(VM&) const;
bool to_boolean() const;
ThrowCompletionOr<Value> get(VM&, PropertyKey const&) const;
ThrowCompletionOr<FunctionObject*> get_method(VM&, PropertyKey const&) const;
DeprecatedString to_string_without_side_effects() const;
Value value_or(Value fallback) const
{
if (is_empty())
return fallback;
return *this;
}
DeprecatedString typeof() const;
bool operator==(Value const&) const;
template<typename... Args>
[[nodiscard]] ALWAYS_INLINE ThrowCompletionOr<Value> invoke(VM&, PropertyKey const& property_key, Args... args);
static constexpr FlatPtr extract_pointer_bits(u64 encoded)
{
#ifdef AK_ARCH_32_BIT
// For 32-bit system the pointer fully fits so we can just return it directly.
static_assert(sizeof(void*) == sizeof(u32));
return static_cast<FlatPtr>(encoded & 0xffff'ffff);
#elif ARCH(X86_64)
// For x86_64 the top 16 bits should be sign extending the "real" top bit (47th).
// So first shift the top 16 bits away then using the right shift it sign extends the top 16 bits.
return static_cast<FlatPtr>((static_cast<i64>(encoded << 16)) >> 16);
#elif ARCH(AARCH64)
// For AArch64 the top 16 bits of the pointer should be zero.
return static_cast<FlatPtr>(encoded & 0xffff'ffff'ffffULL);
#else
# error "Unknown architecture. Don't know whether pointers need to be sign-extended."
#endif
}
private:
Value(u64 tag, u64 val)
{
VERIFY(!(tag & val));
m_value.encoded = tag | val;
}
template<typename PointerType>
Value(u64 tag, PointerType const* ptr)
{
if (!ptr) {
// Make sure all nullptrs are null
m_value.tag = NULL_TAG;
return;
}
VERIFY((tag & 0x8000000000000000ul) == 0x8000000000000000ul);
if constexpr (sizeof(PointerType*) < sizeof(u64)) {
m_value.encoded = tag | reinterpret_cast<u32>(ptr);
} else {
// NOTE: Pointers in x86-64 use just 48 bits however are supposed to be
// sign extended up from the 47th bit.
// This means that all bits above the 47th should be the same as
// the 47th. When storing a pointer we thus drop the top 16 bits as
// we can recover it when extracting the pointer again.
// See also: Value::extract_pointer.
m_value.encoded = tag | (reinterpret_cast<u64>(ptr) & 0x0000ffffffffffffULL);
}
}
// A double is any Value which does not have the full exponent and top mantissa bit set or has
// exactly only those bits set.
bool is_double() const { return (m_value.encoded & CANON_NAN_BITS) != CANON_NAN_BITS || (m_value.encoded == CANON_NAN_BITS); }
bool is_int32() const { return m_value.tag == INT32_TAG; }
i32 as_i32() const
{
VERIFY(is_int32());
return static_cast<i32>(m_value.encoded & 0xFFFFFFFF);
}
template<typename PointerType>
PointerType* extract_pointer() const
{
VERIFY(is_cell());
return reinterpret_cast<PointerType*>(extract_pointer_bits(m_value.encoded));
}
[[nodiscard]] ThrowCompletionOr<Value> invoke_internal(VM&, PropertyKey const&, Optional<MarkedVector<Value>> arguments);
ThrowCompletionOr<i32> to_i32_slow_case(VM&) const;
union {
double as_double;
struct {
u64 payload : 48;
u64 tag : 16;
};
u64 encoded;
} m_value { .encoded = 0 };
friend Value js_undefined();
friend Value js_null();
friend ThrowCompletionOr<Value> greater_than(VM&, Value lhs, Value rhs);
friend ThrowCompletionOr<Value> greater_than_equals(VM&, Value lhs, Value rhs);
friend ThrowCompletionOr<Value> less_than(VM&, Value lhs, Value rhs);
friend ThrowCompletionOr<Value> less_than_equals(VM&, Value lhs, Value rhs);
friend ThrowCompletionOr<Value> add(VM&, Value lhs, Value rhs);
friend bool same_value_non_number(Value lhs, Value rhs);
};
inline Value js_undefined()
{
return Value(UNDEFINED_TAG << TAG_SHIFT, (u64)0);
}
inline Value js_null()
{
return Value(NULL_TAG << TAG_SHIFT, (u64)0);
}
inline Value js_nan()
{
return Value(NAN);
}
inline Value js_infinity()
{
return Value(INFINITY);
}
inline Value js_negative_infinity()
{
return Value(-INFINITY);
}
inline void Cell::Visitor::visit(Value value)
{
if (value.is_cell())
visit_impl(value.as_cell());
}
ThrowCompletionOr<Value> greater_than(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> greater_than_equals(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> less_than(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> less_than_equals(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> bitwise_and(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> bitwise_or(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> bitwise_xor(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> bitwise_not(VM&, Value);
ThrowCompletionOr<Value> unary_plus(VM&, Value);
ThrowCompletionOr<Value> unary_minus(VM&, Value);
ThrowCompletionOr<Value> left_shift(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> right_shift(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> unsigned_right_shift(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> add(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> sub(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> mul(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> div(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> mod(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> exp(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> in(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> instance_of(VM&, Value lhs, Value rhs);
ThrowCompletionOr<Value> ordinary_has_instance(VM&, Value lhs, Value rhs);
ThrowCompletionOr<bool> is_loosely_equal(VM&, Value lhs, Value rhs);
bool is_strictly_equal(Value lhs, Value rhs);
bool same_value(Value lhs, Value rhs);
bool same_value_zero(Value lhs, Value rhs);
bool same_value_non_number(Value lhs, Value rhs);
ThrowCompletionOr<TriState> is_less_than(VM&, Value lhs, Value rhs, bool left_first);
double to_integer_or_infinity(double);
enum class NumberToStringMode {
WithExponent,
WithoutExponent,
};
ThrowCompletionOr<String> number_to_string(VM& vm, double, NumberToStringMode = NumberToStringMode::WithExponent);
DeprecatedString number_to_deprecated_string(double, NumberToStringMode = NumberToStringMode::WithExponent);
Optional<Value> string_to_number(StringView);
inline bool Value::operator==(Value const& value) const { return same_value(*this, value); }
}
namespace AK {
static_assert(sizeof(JS::Value) == sizeof(double));
template<>
class Optional<JS::Value> {
template<typename U>
friend class Optional;
public:
using ValueType = JS::Value;
Optional() = default;
Optional(Optional<JS::Value> const& other)
{
if (other.has_value())
m_value = other.m_value;
}
Optional(Optional&& other)
: m_value(other.m_value)
{
}
template<typename U = JS::Value>
explicit(!IsConvertible<U&&, JS::Value>) Optional(U&& value)
requires(!IsSame<RemoveCVReference<U>, Optional<JS::Value>> && IsConstructible<JS::Value, U &&>)
: m_value(forward<U>(value))
{
}
Optional& operator=(Optional const& other)
{
if (this != &other) {
clear();
m_value = other.m_value;
}
return *this;
}
Optional& operator=(Optional&& other)
{
if (this != &other) {
clear();
m_value = other.m_value;
}
return *this;
}
void clear()
{
m_value = {};
}
[[nodiscard]] bool has_value() const
{
return !m_value.is_empty();
}
[[nodiscard]] JS::Value& value() &
{
VERIFY(has_value());
return m_value;
}
[[nodiscard]] JS::Value const& value() const&
{
VERIFY(has_value());
return m_value;
}
[[nodiscard]] JS::Value value() &&
{
return release_value();
}
[[nodiscard]] JS::Value release_value()
{
VERIFY(has_value());
JS::Value released_value = m_value;
clear();
return released_value;
}
JS::Value value_or(JS::Value const& fallback) const&
{
if (has_value())
return value();
return fallback;
}
[[nodiscard]] JS::Value value_or(JS::Value&& fallback) &&
{
if (has_value())
return value();
return fallback;
}
JS::Value const& operator*() const { return value(); }
JS::Value& operator*() { return value(); }
JS::Value const* operator->() const { return &value(); }
JS::Value* operator->() { return &value(); }
private:
JS::Value m_value;
};
template<>
struct Formatter<JS::Value> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder& builder, JS::Value value)
{
return Formatter<StringView>::format(builder, value.is_empty() ? "<empty>" : value.to_string_without_side_effects());
}
};
}
|