summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibJS/Runtime/Shape.cpp
blob: 09c2f216dd341e8755465fe81bf8e976d82006d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <LibJS/Heap/DeferGC.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Shape.h>

namespace JS {

Shape* Shape::create_unique_clone() const
{
    VERIFY(m_global_object);
    auto* new_shape = heap().allocate_without_global_object<Shape>(*m_global_object);
    new_shape->m_unique = true;
    new_shape->m_prototype = m_prototype;
    ensure_property_table();
    new_shape->ensure_property_table();
    (*new_shape->m_property_table) = *m_property_table;
    new_shape->m_property_count = new_shape->m_property_table->size();
    return new_shape;
}

Shape* Shape::get_or_prune_cached_forward_transition(TransitionKey const& key)
{
    auto it = m_forward_transitions.find(key);
    if (it == m_forward_transitions.end())
        return nullptr;
    if (!it->value) {
        // The cached forward transition has gone stale (from garbage collection). Prune it.
        m_forward_transitions.remove(it);
        return nullptr;
    }
    return it->value;
}

Shape* Shape::create_put_transition(const StringOrSymbol& property_name, PropertyAttributes attributes)
{
    TransitionKey key { property_name, attributes };
    if (auto* existing_shape = get_or_prune_cached_forward_transition(key))
        return existing_shape;
    auto* new_shape = heap().allocate_without_global_object<Shape>(*this, property_name, attributes, TransitionType::Put);
    m_forward_transitions.set(key, new_shape);
    return new_shape;
}

Shape* Shape::create_configure_transition(const StringOrSymbol& property_name, PropertyAttributes attributes)
{
    TransitionKey key { property_name, attributes };
    if (auto* existing_shape = get_or_prune_cached_forward_transition(key))
        return existing_shape;
    auto* new_shape = heap().allocate_without_global_object<Shape>(*this, property_name, attributes, TransitionType::Configure);
    m_forward_transitions.set(key, new_shape);
    return new_shape;
}

Shape* Shape::create_prototype_transition(Object* new_prototype)
{
    return heap().allocate_without_global_object<Shape>(*this, new_prototype);
}

Shape::Shape(ShapeWithoutGlobalObjectTag)
{
}

Shape::Shape(Object& global_object)
    : m_global_object(&global_object)
{
}

Shape::Shape(Shape& previous_shape, const StringOrSymbol& property_name, PropertyAttributes attributes, TransitionType transition_type)
    : m_attributes(attributes)
    , m_transition_type(transition_type)
    , m_global_object(previous_shape.m_global_object)
    , m_previous(&previous_shape)
    , m_property_name(property_name)
    , m_prototype(previous_shape.m_prototype)
    , m_property_count(transition_type == TransitionType::Put ? previous_shape.m_property_count + 1 : previous_shape.m_property_count)
{
}

Shape::Shape(Shape& previous_shape, Object* new_prototype)
    : m_transition_type(TransitionType::Prototype)
    , m_global_object(previous_shape.m_global_object)
    , m_previous(&previous_shape)
    , m_prototype(new_prototype)
    , m_property_count(previous_shape.m_property_count)
{
}

Shape::~Shape()
{
}

void Shape::visit_edges(Cell::Visitor& visitor)
{
    Cell::visit_edges(visitor);
    visitor.visit(m_global_object);
    visitor.visit(m_prototype);
    visitor.visit(m_previous);
    m_property_name.visit_edges(visitor);
    if (m_property_table) {
        for (auto& it : *m_property_table)
            it.key.visit_edges(visitor);
    }
}

Optional<PropertyMetadata> Shape::lookup(const StringOrSymbol& property_name) const
{
    if (m_property_count == 0)
        return {};
    auto property = property_table().get(property_name);
    if (!property.has_value())
        return {};
    return property;
}

const HashMap<StringOrSymbol, PropertyMetadata>& Shape::property_table() const
{
    ensure_property_table();
    return *m_property_table;
}

size_t Shape::property_count() const
{
    return m_property_count;
}

Vector<Shape::Property> Shape::property_table_ordered() const
{
    auto vec = Vector<Shape::Property>();
    vec.resize(property_count());

    for (auto& it : property_table()) {
        vec[it.value.offset] = { it.key, it.value };
    }

    return vec;
}

void Shape::ensure_property_table() const
{
    if (m_property_table)
        return;
    m_property_table = make<HashMap<StringOrSymbol, PropertyMetadata>>();

    u32 next_offset = 0;

    Vector<const Shape*, 64> transition_chain;
    for (auto* shape = m_previous; shape; shape = shape->m_previous) {
        if (shape->m_property_table) {
            *m_property_table = *shape->m_property_table;
            next_offset = shape->m_property_count;
            break;
        }
        transition_chain.append(shape);
    }
    transition_chain.append(this);

    for (ssize_t i = transition_chain.size() - 1; i >= 0; --i) {
        auto* shape = transition_chain[i];
        if (!shape->m_property_name.is_valid()) {
            // Ignore prototype transitions as they don't affect the key map.
            continue;
        }
        if (shape->m_transition_type == TransitionType::Put) {
            m_property_table->set(shape->m_property_name, { next_offset++, shape->m_attributes });
        } else if (shape->m_transition_type == TransitionType::Configure) {
            auto it = m_property_table->find(shape->m_property_name);
            VERIFY(it != m_property_table->end());
            it->value.attributes = shape->m_attributes;
        }
    }
}

void Shape::add_property_to_unique_shape(const StringOrSymbol& property_name, PropertyAttributes attributes)
{
    VERIFY(is_unique());
    VERIFY(m_property_table);
    VERIFY(!m_property_table->contains(property_name));
    m_property_table->set(property_name, { m_property_table->size(), attributes });
    ++m_property_count;
}

void Shape::reconfigure_property_in_unique_shape(const StringOrSymbol& property_name, PropertyAttributes attributes)
{
    VERIFY(is_unique());
    VERIFY(m_property_table);
    auto it = m_property_table->find(property_name);
    VERIFY(it != m_property_table->end());
    it->value.attributes = attributes;
    m_property_table->set(property_name, it->value);
}

void Shape::remove_property_from_unique_shape(const StringOrSymbol& property_name, size_t offset)
{
    VERIFY(is_unique());
    VERIFY(m_property_table);
    if (m_property_table->remove(property_name))
        --m_property_count;
    for (auto& it : *m_property_table) {
        VERIFY(it.value.offset != offset);
        if (it.value.offset > offset)
            --it.value.offset;
    }
}

void Shape::add_property_without_transition(const StringOrSymbol& property_name, PropertyAttributes attributes)
{
    ensure_property_table();
    if (m_property_table->set(property_name, { m_property_count, attributes }) == AK::HashSetResult::InsertedNewEntry)
        ++m_property_count;
}

}