1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
|
/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BuiltinWrappers.h>
#include <AK/Function.h>
#include <AK/Random.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/MathObject.h>
#include <math.h>
namespace JS {
MathObject::MathObject(Realm& realm)
: Object(ConstructWithPrototypeTag::Tag, realm.intrinsics().object_prototype())
{
}
ThrowCompletionOr<void> MathObject::initialize(Realm& realm)
{
auto& vm = this->vm();
MUST_OR_THROW_OOM(Base::initialize(realm));
u8 attr = Attribute::Writable | Attribute::Configurable;
define_native_function(realm, vm.names.abs, abs, 1, attr);
define_native_function(realm, vm.names.random, random, 0, attr);
define_native_function(realm, vm.names.sqrt, sqrt, 1, attr);
define_native_function(realm, vm.names.floor, floor, 1, attr);
define_native_function(realm, vm.names.ceil, ceil, 1, attr);
define_native_function(realm, vm.names.round, round, 1, attr);
define_native_function(realm, vm.names.max, max, 2, attr);
define_native_function(realm, vm.names.min, min, 2, attr);
define_native_function(realm, vm.names.trunc, trunc, 1, attr);
define_native_function(realm, vm.names.sin, sin, 1, attr);
define_native_function(realm, vm.names.cos, cos, 1, attr);
define_native_function(realm, vm.names.tan, tan, 1, attr);
define_native_function(realm, vm.names.pow, pow, 2, attr);
define_native_function(realm, vm.names.exp, exp, 1, attr);
define_native_function(realm, vm.names.expm1, expm1, 1, attr);
define_native_function(realm, vm.names.sign, sign, 1, attr);
define_native_function(realm, vm.names.clz32, clz32, 1, attr);
define_native_function(realm, vm.names.acos, acos, 1, attr);
define_native_function(realm, vm.names.acosh, acosh, 1, attr);
define_native_function(realm, vm.names.asin, asin, 1, attr);
define_native_function(realm, vm.names.asinh, asinh, 1, attr);
define_native_function(realm, vm.names.atan, atan, 1, attr);
define_native_function(realm, vm.names.atanh, atanh, 1, attr);
define_native_function(realm, vm.names.log1p, log1p, 1, attr);
define_native_function(realm, vm.names.cbrt, cbrt, 1, attr);
define_native_function(realm, vm.names.atan2, atan2, 2, attr);
define_native_function(realm, vm.names.fround, fround, 1, attr);
define_native_function(realm, vm.names.hypot, hypot, 2, attr);
define_native_function(realm, vm.names.imul, imul, 2, attr);
define_native_function(realm, vm.names.log, log, 1, attr);
define_native_function(realm, vm.names.log2, log2, 1, attr);
define_native_function(realm, vm.names.log10, log10, 1, attr);
define_native_function(realm, vm.names.sinh, sinh, 1, attr);
define_native_function(realm, vm.names.cosh, cosh, 1, attr);
define_native_function(realm, vm.names.tanh, tanh, 1, attr);
// 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
define_direct_property(vm.names.E, Value(M_E), 0);
define_direct_property(vm.names.LN2, Value(M_LN2), 0);
define_direct_property(vm.names.LN10, Value(M_LN10), 0);
define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
define_direct_property(vm.names.PI, Value(M_PI), 0);
define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0);
// 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
define_direct_property(vm.well_known_symbol_to_string_tag(), PrimitiveString::create(vm, vm.names.Math.as_string()), Attribute::Configurable);
return {};
}
// 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
return js_nan();
// 3. If n is -0𝔽, return +0𝔽.
if (number.is_negative_zero())
return Value(0);
// 4. If n is -∞𝔽, return +∞𝔽.
if (number.is_negative_infinity())
return js_infinity();
// 5. If n < -0𝔽, return -n.
// 6. Return n.
return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
}
// 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n > 1𝔽, or n < -1𝔽, return NaN.
if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
return js_nan();
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1)
return Value(0);
// 4. Return an implementation-approximated Number value representing the result of the inverse cosine of ℝ(n).
return Value(::acos(number.as_double()));
}
// 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
return number;
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1.0)
return Value(0.0);
// 4. If n < 1𝔽, return NaN.
if (number.as_double() < 1)
return js_nan();
// 5. Return an implementation-approximated Number value representing the result of the inverse hyperbolic cosine of ℝ(n).
return Value(::acosh(number.as_double()));
}
// 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n > 1𝔽 or n < -1𝔽, return NaN.
if (number.as_double() > 1 || number.as_double() < -1)
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the inverse sine of ℝ(n).
return Value(::asin(number.as_double()));
}
// 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. Return an implementation-approximated Number value representing the result of the inverse hyperbolic sine of ℝ(n).
return Value(::asinh(number.as_double()));
}
// 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is one of NaN, +0𝔽, or -0𝔽, return n.
if (number.is_nan() || number.as_double() == 0)
return number;
// 3. If n is +∞𝔽, return an implementation-approximated Number value representing π / 2.
if (number.is_positive_infinity())
return Value(M_PI_2);
// 4. If n is -∞𝔽, return an implementation-approximated Number value representing -π / 2.
if (number.is_negative_infinity())
return Value(-M_PI_2);
// 5. Return an implementation-approximated Number value representing the result of the inverse tangent of ℝ(n).
return Value(::atan(number.as_double()));
}
// 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n > 1𝔽 or n < -1𝔽, return NaN.
if (number.as_double() > 1. || number.as_double() < -1.)
return js_nan();
// 4. If n is 1𝔽, return +∞𝔽.
if (number.as_double() == 1.)
return js_infinity();
// 5. If n is -1𝔽, return -∞𝔽.
if (number.as_double() == -1.)
return js_negative_infinity();
// 6. Return an implementation-approximated Number value representing the result of the inverse hyperbolic tangent of ℝ(n).
return Value(::atanh(number.as_double()));
}
// 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
{
auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
auto y = TRY(vm.argument(0).to_number(vm));
auto x = TRY(vm.argument(1).to_number(vm));
if (y.is_nan() || x.is_nan())
return js_nan();
if (y.is_positive_infinity()) {
if (x.is_positive_infinity())
return Value(M_PI_4);
else if (x.is_negative_infinity())
return Value(three_quarters_pi);
else
return Value(M_PI_2);
}
if (y.is_negative_infinity()) {
if (x.is_positive_infinity())
return Value(-M_PI_4);
else if (x.is_negative_infinity())
return Value(-three_quarters_pi);
else
return Value(-M_PI_2);
}
if (y.is_positive_zero()) {
if (x.as_double() > 0 || x.is_positive_zero())
return Value(0.0);
else
return Value(M_PI);
}
if (y.is_negative_zero()) {
if (x.as_double() > 0 || x.is_positive_zero())
return Value(-0.0);
else
return Value(-M_PI);
}
VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
if (y.as_double() > 0) {
if (x.is_positive_infinity())
return Value(0);
else if (x.is_negative_infinity())
return Value(M_PI);
else if (x.is_positive_zero() || x.is_negative_zero())
return Value(M_PI_2);
}
if (y.as_double() < 0) {
if (x.is_positive_infinity())
return Value(-0.0);
else if (x.is_negative_infinity())
return Value(-M_PI);
else if (x.is_positive_zero() || x.is_negative_zero())
return Value(-M_PI_2);
}
VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
return Value(::atan2(y.as_double(), x.as_double()));
}
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.as_double() == 0)
return number;
// 3. Return an implementation-approximated Number value representing the result of the cube root of ℝ(n).
return Value(::cbrt(number.as_double()));
}
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.as_double() == 0)
return number;
// 3. If n < -0𝔽 and n > -1𝔽, return -0𝔽.
if (number.as_double() < 0 && number.as_double() > -1)
return Value(-0.f);
// 4. If n is an integral Number, return n.
// 5. Return the smallest (closest to -∞) integral Number value that is not less than n.
return Value(::ceil(number.as_double()));
}
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
// 1. Let n be ? ToUint32(x).
auto number = TRY(vm.argument(0).to_u32(vm));
// 2. Let p be the number of leading zero bits in the unsigned 32-bit binary representation of n.
// 3. Return 𝔽(p).
return Value(count_leading_zeroes_safe(number));
}
// 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN.
if (number.is_nan() || number.is_infinity())
return js_nan();
// 3. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return Value(1);
// 4. Return an implementation-approximated Number value representing the result of the cosine of ℝ(n).
return Value(::cos(number.as_double()));
}
// 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
return js_nan();
// 3. If n is +∞𝔽 or n is -∞𝔽, return +∞𝔽.
if (number.is_positive_infinity() || number.is_negative_infinity())
return js_infinity();
// 4. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return Value(1);
// 5. Return an implementation-approximated Number value representing the result of the hyperbolic cosine of ℝ(n).
return Value(::cosh(number.as_double()));
}
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is either NaN or +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
return number;
// 3. If n is either +0𝔽 or -0𝔽, return 1𝔽.
if (number.as_double() == 0)
return Value(1);
// 4. If n is -∞𝔽, return +0𝔽.
if (number.is_negative_infinity())
return Value(0);
// 5. Return an implementation-approximated Number value representing the result of the exponential function of ℝ(n).
return Value(::exp(number.as_double()));
}
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is one of NaN, +0𝔽, -0𝔽, or +∞𝔽, return n.
if (number.is_nan() || number.as_double() == 0 || number.is_positive_infinity())
return number;
// 3. If n is -∞𝔽, return -1𝔽.
if (number.is_negative_infinity())
return Value(-1);
// 4. Return an implementation-approximated Number value representing the result of subtracting 1 from the exponential function of ℝ(n).
return Value(::expm1(number.as_double()));
}
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.as_double() == 0)
return number;
// 3. If n < 1𝔽 and n > +0𝔽, return +0𝔽.
// 4. If n is an integral Number, return n.
// 5. Return the greatest (closest to +∞) integral Number value that is not greater than n.
return Value(::floor(number.as_double()));
}
// 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
return js_nan();
// 3. If n is one of +0𝔽, -0𝔽, +∞𝔽, or -∞𝔽, return n.
if (number.as_double() == 0 || number.is_infinity())
return number;
// 4. Let n32 be the result of converting n to a value in IEEE 754-2019 binary32 format using roundTiesToEven mode.
// 5. Let n64 be the result of converting n32 to a value in IEEE 754-2019 binary64 format.
// 6. Return the ECMAScript Number value corresponding to n64.
return Value((float)number.as_double());
}
// 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
{
// 1. Let coerced be a new empty List.
Vector<Value> coerced;
// 2. For each element arg of args, do
for (size_t i = 0; i < vm.argument_count(); ++i) {
// a. Let n be ? ToNumber(arg).
auto number = TRY(vm.argument(i).to_number(vm));
// b. Append n to coerced.
coerced.append(number);
}
// 3. For each element number of coerced, do
for (auto& number : coerced) {
// a. If number is either +∞𝔽 or -∞𝔽, return +∞𝔽.
if (number.is_infinity())
return js_infinity();
}
// 4. Let onlyZero be true.
auto only_zero = true;
double sum_of_squares = 0;
// 5. For each element number of coerced, do
for (auto& number : coerced) {
// a. If number is NaN, return NaN.
// OPTIMIZATION: For infinities, the result will be infinity with the same sign, so we can return early.
if (number.is_nan() || number.is_infinity())
return number;
// b. If number is neither +0𝔽 nor -0𝔽, set onlyZero to false.
if (number.as_double() != 0)
only_zero = false;
sum_of_squares += number.as_double() * number.as_double();
}
// 6. If onlyZero is true, return +0𝔽.
if (only_zero)
return Value(0);
// 7. Return an implementation-approximated Number value representing the square root of the sum of squares of the mathematical values of the elements of coerced.
return Value(::sqrt(sum_of_squares));
}
// 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
{
// 1. Let a be ℝ(? ToUint32(x)).
auto a = TRY(vm.argument(0).to_u32(vm));
// 2. Let b be ℝ(? ToUint32(y)).
auto b = TRY(vm.argument(1).to_u32(vm));
// 3. Let product be (a × b) modulo 2^32.
// 4. If product ≥ 2^31, return 𝔽(product - 2^32); otherwise return 𝔽(product).
return Value(static_cast<i32>(a * b));
}
// 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
return number;
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1.)
return Value(0);
// 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return js_negative_infinity();
// 5. If n < -0𝔽, return NaN.
if (number.as_double() < -0.)
return js_nan();
// 6. Return an implementation-approximated Number value representing the result of the natural logarithm of ℝ(n).
return Value(::log(number.as_double()));
}
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, n is -0𝔽, or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero() || number.is_positive_infinity())
return number;
// 3. If n is -1𝔽, return -∞𝔽.
if (number.as_double() == -1.)
return js_negative_infinity();
// 4. If n < -1𝔽, return NaN.
if (number.as_double() < -1.)
return js_nan();
// 5. Return an implementation-approximated Number value representing the result of the natural logarithm of 1 + ℝ(n).
return Value(::log1p(number.as_double()));
}
// 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
return number;
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1.)
return Value(0);
// 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return js_negative_infinity();
// 5. If n < -0𝔽, return NaN.
if (number.as_double() < -0.)
return js_nan();
// 6. Return an implementation-approximated Number value representing the result of the base 10 logarithm of ℝ(n).
return Value(::log10(number.as_double()));
}
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
return number;
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1.)
return Value(0);
// 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return js_negative_infinity();
// 5. If n < -0𝔽, return NaN.
if (number.as_double() < -0.)
return js_nan();
// 6. Return an implementation-approximated Number value representing the result of the base 2 logarithm of ℝ(n).
return Value(::log2(number.as_double()));
}
// 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
// 1. Let coerced be a new empty List.
Vector<Value> coerced;
// 2. For each element arg of args, do
for (size_t i = 0; i < vm.argument_count(); ++i) {
// a. Let n be ? ToNumber(arg).
auto number = TRY(vm.argument(i).to_number(vm));
// b. Append n to coerced.
coerced.append(number);
}
// 3. Let highest be -∞𝔽.
auto highest = js_negative_infinity();
// 4. For each element number of coerced, do
for (auto& number : coerced) {
// a. If number is NaN, return NaN.
if (number.is_nan())
return js_nan();
// b. If number is +0𝔽 and highest is -0𝔽, set highest to +0𝔽.
// c. If number > highest, set highest to number.
if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
highest = number;
}
// 5. Return highest.
return highest;
}
// 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
// 1. Let coerced be a new empty List.
Vector<Value> coerced;
// 2. For each element arg of args, do
for (size_t i = 0; i < vm.argument_count(); ++i) {
// a. Let n be ? ToNumber(arg).
auto number = TRY(vm.argument(i).to_number(vm));
// b. Append n to coerced.
coerced.append(number);
}
// 3. Let lowest be +∞𝔽.
auto lowest = js_infinity();
// 4. For each element number of coerced, do
for (auto& number : coerced) {
// a. If number is NaN, return NaN.
if (number.is_nan())
return js_nan();
// b. If number is -0𝔽 and lowest is +0𝔽, set lowest to -0𝔽.
// c. If number < lowest, set lowest to number.
if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
lowest = number;
}
// 5. Return lowest.
return lowest;
}
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
// Set base to ? ToNumber(base).
auto base = TRY(vm.argument(0).to_number(vm));
// 2. Set exponent to ? ToNumber(exponent).
auto exponent = TRY(vm.argument(1).to_number(vm));
// 3. Return Number::exponentiate(base, exponent).
return JS::exp(vm, base, exponent);
}
// 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
{
// This function returns a Number value with positive sign, greater than or equal to +0𝔽 but strictly less than 1𝔽,
// chosen randomly or pseudo randomly with approximately uniform distribution over that range, using an
// implementation-defined algorithm or strategy.
double r = (double)get_random<u32>() / (double)UINT32_MAX;
return Value(r);
}
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is an integral Number, return n.
if (!number.is_finite_number() || number.as_double() == ::trunc(number.as_double()))
return number;
// 3. If n < 0.5𝔽 and n > +0𝔽, return +0𝔽.
// 4. If n < -0𝔽 and n ≥ -0.5𝔽, return -0𝔽.
// 5. Return the integral Number closest to n, preferring the Number closer to +∞ in the case of a tie.
double integer = ::ceil(number.as_double());
if (integer - 0.5 > number.as_double())
integer--;
return Value(integer);
}
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is one of NaN, +0𝔽, or -0𝔽, return n.
if (number.is_nan() || number.as_double() == 0)
return number;
// 3. If n < -0𝔽, return -1𝔽.
if (number.as_double() < 0)
return Value(-1);
// 4. Return 1𝔽.
return Value(1);
}
// 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n is +∞𝔽 or n is -∞𝔽, return NaN.
if (number.is_infinity())
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the sine of ℝ(n).
return Value(::sin(number.as_double()));
}
// 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. Return an implementation-approximated Number value representing the result of the hyperbolic sine of ℝ(n).
return Value(::sinh(number.as_double()));
}
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is one of NaN, +0𝔽, -0𝔽, or +∞𝔽, return n.
if (number.is_nan() || number.as_double() == 0 || number.is_positive_infinity())
return number;
// 3. If n < -0𝔽, return NaN.
if (number.as_double() < 0)
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the square root of ℝ(n).
return Value(::sqrt(number.as_double()));
}
// 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n is +∞𝔽, or n is -∞𝔽, return NaN.
if (number.is_infinity())
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the tangent of ℝ(n).
return Value(::tan(number.as_double()));
}
// 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n is +∞𝔽, return 1𝔽.
if (number.is_positive_infinity())
return Value(1);
// 4. If n is -∞𝔽, return -1𝔽.
if (number.is_negative_infinity())
return Value(-1);
// 5. Return an implementation-approximated Number value representing the result of the hyperbolic tangent of ℝ(n).
return Value(::tanh(number.as_double()));
}
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (number.is_nan() || number.is_infinity() || number.as_double() == 0)
return number;
// 3. If n < 1𝔽 and n > +0𝔽, return +0𝔽.
// 4. If n < -0𝔽 and n > -1𝔽, return -0𝔽.
// 5. Return the integral Number nearest n in the direction of +0𝔽.
return Value(number.as_double() < 0
? ::ceil(number.as_double())
: ::floor(number.as_double()));
}
}
|