1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
/*
* Copyright (c) 2022, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/StringBuilder.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/NumberFormat.h>
#include <LibJS/Runtime/Intl/NumberFormatConstructor.h>
#include <LibJS/Runtime/Intl/PluralRules.h>
#include <LibJS/Runtime/Intl/RelativeTimeFormat.h>
namespace JS::Intl {
// 17 RelativeTimeFormat Objects, https://tc39.es/ecma402/#relativetimeformat-objects
RelativeTimeFormat::RelativeTimeFormat(Object& prototype)
: Object(prototype)
{
}
void RelativeTimeFormat::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
if (m_number_format)
visitor.visit(m_number_format);
if (m_plural_rules)
visitor.visit(m_plural_rules);
}
void RelativeTimeFormat::set_numeric(StringView numeric)
{
if (numeric == "always"sv) {
m_numeric = Numeric::Always;
} else if (numeric == "auto"sv) {
m_numeric = Numeric::Auto;
} else {
VERIFY_NOT_REACHED();
}
}
StringView RelativeTimeFormat::numeric_string() const
{
switch (m_numeric) {
case Numeric::Always:
return "always"sv;
case Numeric::Auto:
return "auto"sv;
default:
VERIFY_NOT_REACHED();
}
}
// 17.5.1 SingularRelativeTimeUnit ( unit ), https://tc39.es/ecma402/#sec-singularrelativetimeunit
ThrowCompletionOr<Unicode::TimeUnit> singular_relative_time_unit(GlobalObject& global_object, StringView unit)
{
auto& vm = global_object.vm();
// 1. Assert: Type(unit) is String.
// 2. If unit is "seconds", return "second".
if (unit == "seconds"sv)
return Unicode::TimeUnit::Second;
// 3. If unit is "minutes", return "minute".
if (unit == "minutes"sv)
return Unicode::TimeUnit::Minute;
// 4. If unit is "hours", return "hour".
if (unit == "hours"sv)
return Unicode::TimeUnit::Hour;
// 5. If unit is "days", return "day".
if (unit == "days"sv)
return Unicode::TimeUnit::Day;
// 6. If unit is "weeks", return "week".
if (unit == "weeks"sv)
return Unicode::TimeUnit::Week;
// 7. If unit is "months", return "month".
if (unit == "months"sv)
return Unicode::TimeUnit::Month;
// 8. If unit is "quarters", return "quarter".
if (unit == "quarters"sv)
return Unicode::TimeUnit::Quarter;
// 9. If unit is "years", return "year".
if (unit == "years"sv)
return Unicode::TimeUnit::Year;
// 10. If unit is not one of "second", "minute", "hour", "day", "week", "month", "quarter", or "year", throw a RangeError exception.
// 11. Return unit.
if (auto time_unit = Unicode::time_unit_from_string(unit); time_unit.has_value())
return *time_unit;
return vm.throw_completion<RangeError>(ErrorType::IntlInvalidUnit, unit);
}
// 17.5.2 PartitionRelativeTimePattern ( relativeTimeFormat, value, unit ), https://tc39.es/ecma402/#sec-PartitionRelativeTimePattern
ThrowCompletionOr<Vector<PatternPartitionWithUnit>> partition_relative_time_pattern(GlobalObject& global_object, RelativeTimeFormat& relative_time_format, double value, StringView unit)
{
auto& vm = global_object.vm();
// 1. Assert: relativeTimeFormat has an [[InitializedRelativeTimeFormat]] internal slot.
// 2. Assert: Type(value) is Number.
// 3. Assert: Type(unit) is String.
// 4. If value is NaN, +∞𝔽, or -∞𝔽, throw a RangeError exception.
if (!Value(value).is_finite_number())
return vm.throw_completion<RangeError>(ErrorType::IntlNumberIsNaNOrInfinity);
// 5. Let unit be ? SingularRelativeTimeUnit(unit).
auto time_unit = TRY(singular_relative_time_unit(global_object, unit));
// 6. Let localeData be %RelativeTimeFormat%.[[LocaleData]].
// 7. Let dataLocale be relativeTimeFormat.[[DataLocale]].
auto const& data_locale = relative_time_format.data_locale();
// 8. Let fields be localeData.[[<dataLocale>]].
// 9. Let style be relativeTimeFormat.[[Style]].
auto style = relative_time_format.style();
// NOTE: The next steps form a "key" based on combining various formatting options into a string,
// then filtering the large set of locale data down to the pattern we are looking for. Instead,
// LibUnicode expects the individual options as enumeration values, and returns the couple of
// patterns that match those options.
auto find_patterns_for_tense_or_number = [&](StringView tense_or_number) {
// 10. If style is equal to "short", then
// a. Let entry be the string-concatenation of unit and "-short".
// 11. Else if style is equal to "narrow", then
// a. Let entry be the string-concatenation of unit and "-narrow".
// 12. Else,
// a. Let entry be unit.
auto patterns = Unicode::get_relative_time_format_patterns(data_locale, time_unit, tense_or_number, style);
// 13. If fields doesn't have a field [[<entry>]], then
if (patterns.is_empty()) {
// a. Let entry be unit.
// NOTE: In the CLDR, the lack of "short" or "narrow" in the key implies "long".
patterns = Unicode::get_relative_time_format_patterns(data_locale, time_unit, tense_or_number, Unicode::Style::Long);
}
// 14. Let patterns be fields.[[<entry>]].
return patterns;
};
// 15. Let numeric be relativeTimeFormat.[[Numeric]].
// 16. If numeric is equal to "auto", then
if (relative_time_format.numeric() == RelativeTimeFormat::Numeric::Auto) {
// a. Let valueString be ToString(value).
auto value_string = MUST(Value(value).to_string(global_object));
// b. If patterns has a field [[<valueString>]], then
if (auto patterns = find_patterns_for_tense_or_number(value_string); !patterns.is_empty()) {
VERIFY(patterns.size() == 1);
// i. Let result be patterns.[[<valueString>]].
auto result = patterns[0].pattern.to_string();
// ii. Return a List containing the Record { [[Type]]: "literal", [[Value]]: result }.
return Vector<PatternPartitionWithUnit> { { "literal"sv, move(result) } };
}
}
// 17. If value is -0𝔽 or if value is less than 0, then
StringView tense;
if (Value(value).is_negative_zero() || (value < 0)) {
// a. Let tl be "past".
tense = "past"sv;
// FIXME: The spec does not say to do this, but nothing makes sense after this with a negative value.
value = fabs(value);
}
// 18. Else,
else {
// a. Let tl be "future".
tense = "future"sv;
}
// 19. Let po be patterns.[[<tl>]].
auto patterns = find_patterns_for_tense_or_number(tense);
// 20. Let fv be ! PartitionNumberPattern(relativeTimeFormat.[[NumberFormat]], value).
auto value_partitions = partition_number_pattern(global_object, relative_time_format.number_format(), Value(value));
// 21. Let pr be ! ResolvePlural(relativeTimeFormat.[[PluralRules]], value).
auto plurality = resolve_plural(relative_time_format.plural_rules(), Value(value));
// 22. Let pattern be po.[[<pr>]].
auto pattern = patterns.find_if([&](auto& p) { return p.plurality == plurality; });
if (pattern == patterns.end())
return Vector<PatternPartitionWithUnit> {};
// 23. Return ! MakePartsList(pattern, unit, fv).
return make_parts_list(pattern->pattern, Unicode::time_unit_to_string(time_unit), move(value_partitions));
}
// 17.5.3 MakePartsList ( pattern, unit, parts ), https://tc39.es/ecma402/#sec-makepartslist
Vector<PatternPartitionWithUnit> make_parts_list(StringView pattern, StringView unit, Vector<PatternPartition> parts)
{
// 1. Let patternParts be PartitionPattern(pattern).
auto pattern_parts = partition_pattern(pattern);
// 2. Let result be a new empty List.
Vector<PatternPartitionWithUnit> result;
// 3. For each Record { [[Type]], [[Value]] } patternPart in patternParts, do
for (auto& pattern_part : pattern_parts) {
// a. If patternPart.[[Type]] is "literal", then
if (pattern_part.type == "literal"sv) {
// i. Append Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]], [[Unit]]: empty } to result.
result.empend("literal"sv, move(pattern_part.value));
}
// b. Else,
else {
// i. Assert: patternPart.[[Type]] is "0".
VERIFY(pattern_part.type == "0"sv);
// ii. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// 1. Append Record { [[Type]]: part.[[Type]], [[Value]]: part.[[Value]], [[Unit]]: unit } to result.
result.empend(part.type, move(part.value), unit);
}
}
}
// 4. Return result.
return result;
}
// 17.5.4 FormatRelativeTime ( relativeTimeFormat, value, unit ), https://tc39.es/ecma402/#sec-FormatRelativeTime
ThrowCompletionOr<String> format_relative_time(GlobalObject& global_object, RelativeTimeFormat& relative_time_format, double value, StringView unit)
{
// 1. Let parts be ? PartitionRelativeTimePattern(relativeTimeFormat, value, unit).
auto parts = TRY(partition_relative_time_pattern(global_object, relative_time_format, value, unit));
// 2. Let result be an empty String.
StringBuilder result;
// 3. For each Record { [[Type]], [[Value]], [[Unit]] } part in parts, do
for (auto& part : parts) {
// a. Set result to the string-concatenation of result and part.[[Value]].
result.append(move(part.value));
}
// 4. Return result.
return result.build();
}
// 17.5.5 FormatRelativeTimeToParts ( relativeTimeFormat, value, unit ), https://tc39.es/ecma402/#sec-FormatRelativeTimeToParts
ThrowCompletionOr<Array*> format_relative_time_to_parts(GlobalObject& global_object, RelativeTimeFormat& relative_time_format, double value, StringView unit)
{
auto& vm = global_object.vm();
auto& realm = *global_object.associated_realm();
// 1. Let parts be ? PartitionRelativeTimePattern(relativeTimeFormat, value, unit).
auto parts = TRY(partition_relative_time_pattern(global_object, relative_time_format, value, unit));
// 2. Let result be ! ArrayCreate(0).
auto* result = MUST(Array::create(realm, 0));
// 3. Let n be 0.
size_t n = 0;
// 4. For each Record { [[Type]], [[Value]], [[Unit]] } part in parts, do
for (auto& part : parts) {
// a. Let O be OrdinaryObjectCreate(%Object.prototype%).
auto* object = Object::create(realm, global_object.object_prototype());
// b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type)));
// c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value))));
// d. If part.[[Unit]] is not empty, then
if (!part.unit.is_empty()) {
// i. Perform ! CreateDataPropertyOrThrow(O, "unit", part.[[Unit]]).
MUST(object->create_data_property_or_throw(vm.names.unit, js_string(vm, part.unit)));
}
// e. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
MUST(result->create_data_property_or_throw(n, object));
// f. Increment n by 1.
++n;
}
// 5. Return result.
return result;
}
}
|