summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibJS/Runtime/ECMAScriptFunctionObject.cpp
blob: 451cafc04e3aa80fc39e1a2e9797e7a68e615b99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/*
 * Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
 * Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Debug.h>
#include <AK/Function.h>
#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/AsyncFunctionDriverWrapper.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/ExecutionContext.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/GeneratorObject.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PromiseCapability.h>
#include <LibJS/Runtime/PromiseConstructor.h>
#include <LibJS/Runtime/Value.h>

namespace JS {

ECMAScriptFunctionObject* ECMAScriptFunctionObject::create(Realm& realm, FlyString name, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> parameters, i32 m_function_length, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
{
    Object* prototype = nullptr;
    switch (kind) {
    case FunctionKind::Normal:
        prototype = realm.intrinsics().function_prototype();
        break;
    case FunctionKind::Generator:
        prototype = realm.intrinsics().generator_function_prototype();
        break;
    case FunctionKind::Async:
        prototype = realm.intrinsics().async_function_prototype();
        break;
    case FunctionKind::AsyncGenerator:
        prototype = realm.intrinsics().async_generator_function_prototype();
        break;
    }
    return realm.heap().allocate<ECMAScriptFunctionObject>(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, parent_environment, private_environment, *prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name));
}

ECMAScriptFunctionObject* ECMAScriptFunctionObject::create(Realm& realm, FlyString name, Object& prototype, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> parameters, i32 m_function_length, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
{
    return realm.heap().allocate<ECMAScriptFunctionObject>(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, parent_environment, private_environment, prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name));
}

ECMAScriptFunctionObject::ECMAScriptFunctionObject(FlyString name, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> formal_parameters, i32 function_length, Environment* parent_environment, PrivateEnvironment* private_environment, Object& prototype, FunctionKind kind, bool strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
    : FunctionObject(prototype)
    , m_name(move(name))
    , m_function_length(function_length)
    , m_environment(parent_environment)
    , m_private_environment(private_environment)
    , m_formal_parameters(move(formal_parameters))
    , m_ecmascript_code(ecmascript_code)
    , m_realm(&prototype.shape().realm())
    , m_source_text(move(source_text))
    , m_class_field_initializer_name(move(class_field_initializer_name))
    , m_strict(strict)
    , m_might_need_arguments_object(might_need_arguments_object)
    , m_contains_direct_call_to_eval(contains_direct_call_to_eval)
    , m_is_arrow_function(is_arrow_function)
    , m_kind(kind)
{
    // NOTE: This logic is from OrdinaryFunctionCreate, https://tc39.es/ecma262/#sec-ordinaryfunctioncreate

    // 9. If thisMode is lexical-this, set F.[[ThisMode]] to lexical.
    if (m_is_arrow_function)
        m_this_mode = ThisMode::Lexical;
    // 10. Else if Strict is true, set F.[[ThisMode]] to strict.
    else if (m_strict)
        m_this_mode = ThisMode::Strict;
    else
        // 11. Else, set F.[[ThisMode]] to global.
        m_this_mode = ThisMode::Global;

    // 15. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule().
    m_script_or_module = vm().get_active_script_or_module();

    // 15.1.3 Static Semantics: IsSimpleParameterList, https://tc39.es/ecma262/#sec-static-semantics-issimpleparameterlist
    m_has_simple_parameter_list = all_of(m_formal_parameters, [&](auto& parameter) {
        if (parameter.is_rest)
            return false;
        if (parameter.default_value)
            return false;
        if (!parameter.binding.template has<FlyString>())
            return false;
        return true;
    });
}

void ECMAScriptFunctionObject::initialize(Realm& realm)
{
    auto& vm = this->vm();
    Base::initialize(realm);
    // Note: The ordering of these properties must be: length, name, prototype which is the order
    //       they are defined in the spec: https://tc39.es/ecma262/#sec-function-instances .
    //       This is observable through something like: https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
    //       which must give the properties in chronological order which in this case is the order they
    //       are defined in the spec.

    MUST(define_property_or_throw(vm.names.length, { .value = Value(m_function_length), .writable = false, .enumerable = false, .configurable = true }));
    MUST(define_property_or_throw(vm.names.name, { .value = PrimitiveString::create(vm, m_name.is_null() ? "" : m_name), .writable = false, .enumerable = false, .configurable = true }));

    if (!m_is_arrow_function) {
        Object* prototype = nullptr;
        switch (m_kind) {
        case FunctionKind::Normal:
            prototype = vm.heap().allocate<Object>(realm, *realm.intrinsics().new_ordinary_function_prototype_object_shape());
            MUST(prototype->define_property_or_throw(vm.names.constructor, { .value = this, .writable = true, .enumerable = false, .configurable = true }));
            break;
        case FunctionKind::Generator:
            // prototype is "g1.prototype" in figure-2 (https://tc39.es/ecma262/img/figure-2.png)
            prototype = Object::create(realm, realm.intrinsics().generator_function_prototype_prototype());
            break;
        case FunctionKind::Async:
            break;
        case FunctionKind::AsyncGenerator:
            prototype = Object::create(realm, realm.intrinsics().async_generator_function_prototype_prototype());
            break;
        }
        // 27.7.4 AsyncFunction Instances, https://tc39.es/ecma262/#sec-async-function-instances
        // AsyncFunction instances do not have a prototype property as they are not constructible.
        if (m_kind != FunctionKind::Async)
            define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
    }
}

// 10.2.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-call-thisargument-argumentslist
ThrowCompletionOr<Value> ECMAScriptFunctionObject::internal_call(Value this_argument, MarkedVector<Value> arguments_list)
{
    auto& vm = this->vm();

    // 1. Let callerContext be the running execution context.
    // NOTE: No-op, kept by the VM in its execution context stack.

    ExecutionContext callee_context(heap());

    // Non-standard
    callee_context.arguments.extend(move(arguments_list));
    if (auto* interpreter = vm.interpreter_if_exists())
        callee_context.current_node = interpreter->current_node();

    // 2. Let calleeContext be PrepareForOrdinaryCall(F, undefined).
    // NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
    TRY(prepare_for_ordinary_call(callee_context, nullptr));

    // 3. Assert: calleeContext is now the running execution context.
    VERIFY(&vm.running_execution_context() == &callee_context);

    // 4. If F.[[IsClassConstructor]] is true, then
    if (m_is_class_constructor) {
        // a. Let error be a newly created TypeError object.
        // b. NOTE: error is created in calleeContext with F's associated Realm Record.
        auto throw_completion = vm.throw_completion<TypeError>(ErrorType::ClassConstructorWithoutNew, m_name);

        // c. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
        vm.pop_execution_context();

        // d. Return ThrowCompletion(error).
        return throw_completion;
    }

    // 5. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
    ordinary_call_bind_this(callee_context, this_argument);

    // 6. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
    auto result = ordinary_call_evaluate_body();

    // 7. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
    vm.pop_execution_context();

    // 8. If result.[[Type]] is return, return result.[[Value]].
    if (result.type() == Completion::Type::Return)
        return result.value();

    // 9. ReturnIfAbrupt(result).
    if (result.is_abrupt()) {
        VERIFY(result.is_error());
        return result;
    }

    // 10. Return undefined.
    return js_undefined();
}

// 10.2.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget
ThrowCompletionOr<Object*> ECMAScriptFunctionObject::internal_construct(MarkedVector<Value> arguments_list, FunctionObject& new_target)
{
    auto& vm = this->vm();

    // 1. Let callerContext be the running execution context.
    // NOTE: No-op, kept by the VM in its execution context stack.

    // 2. Let kind be F.[[ConstructorKind]].
    auto kind = m_constructor_kind;

    Object* this_argument = nullptr;

    // 3. If kind is base, then
    if (kind == ConstructorKind::Base) {
        // a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%Object.prototype%").
        this_argument = TRY(ordinary_create_from_constructor<Object>(vm, new_target, &Intrinsics::object_prototype));
    }

    ExecutionContext callee_context(heap());

    // Non-standard
    callee_context.arguments.extend(move(arguments_list));
    if (auto* interpreter = vm.interpreter_if_exists())
        callee_context.current_node = interpreter->current_node();

    // 4. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).
    // NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
    TRY(prepare_for_ordinary_call(callee_context, &new_target));

    // 5. Assert: calleeContext is now the running execution context.
    VERIFY(&vm.running_execution_context() == &callee_context);

    // 6. If kind is base, then
    if (kind == ConstructorKind::Base) {
        // a. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
        ordinary_call_bind_this(callee_context, this_argument);

        // b. Let initializeResult be Completion(InitializeInstanceElements(thisArgument, F)).
        auto initialize_result = this_argument->initialize_instance_elements(*this);

        // c. If initializeResult is an abrupt completion, then
        if (initialize_result.is_throw_completion()) {
            // i. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
            vm.pop_execution_context();

            // ii. Return ? initializeResult.
            return initialize_result.throw_completion();
        }
    }

    // 7. Let constructorEnv be the LexicalEnvironment of calleeContext.
    auto* constructor_env = callee_context.lexical_environment;

    // 8. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
    auto result = ordinary_call_evaluate_body();

    // 9. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
    vm.pop_execution_context();

    // 10. If result.[[Type]] is return, then
    if (result.type() == Completion::Type::Return) {
        // FIXME: This is leftover from untangling the call/construct mess - doesn't belong here in any way, but removing it breaks derived classes.
        // Likely fixed by making ClassDefinitionEvaluation fully spec compliant.
        if (kind == ConstructorKind::Derived && result.value()->is_object()) {
            auto prototype = TRY(new_target.get(vm.names.prototype));
            if (prototype.is_object())
                TRY(result.value()->as_object().internal_set_prototype_of(&prototype.as_object()));
        }
        // EOF (End of FIXME)

        // a. If Type(result.[[Value]]) is Object, return result.[[Value]].
        if (result.value()->is_object())
            return &result.value()->as_object();

        // b. If kind is base, return thisArgument.
        if (kind == ConstructorKind::Base)
            return this_argument;

        // c. If result.[[Value]] is not undefined, throw a TypeError exception.
        if (!result.value()->is_undefined())
            return vm.throw_completion<TypeError>(ErrorType::DerivedConstructorReturningInvalidValue);
    }
    // 11. Else, ReturnIfAbrupt(result).
    else if (result.is_abrupt()) {
        VERIFY(result.is_error());
        return result;
    }

    // 12. Let thisBinding be ? constructorEnv.GetThisBinding().
    auto this_binding = TRY(constructor_env->get_this_binding(vm));

    // 13. Assert: Type(thisBinding) is Object.
    VERIFY(this_binding.is_object());

    // 14. Return thisBinding.
    return &this_binding.as_object();
}

void ECMAScriptFunctionObject::visit_edges(Visitor& visitor)
{
    Base::visit_edges(visitor);
    visitor.visit(m_environment);
    visitor.visit(m_private_environment);
    visitor.visit(m_realm);
    visitor.visit(m_home_object);

    for (auto& field : m_fields) {
        if (auto* property_key_ptr = field.name.get_pointer<PropertyKey>(); property_key_ptr && property_key_ptr->is_symbol())
            visitor.visit(property_key_ptr->as_symbol());
    }

    m_script_or_module.visit(
        [](Empty) {},
        [&](auto& script_or_module) {
            visitor.visit(script_or_module.ptr());
        });
}

// 10.2.7 MakeMethod ( F, homeObject ), https://tc39.es/ecma262/#sec-makemethod
void ECMAScriptFunctionObject::make_method(Object& home_object)
{
    // 1. Set F.[[HomeObject]] to homeObject.
    m_home_object = &home_object;

    // 2. Return unused.
}

// 10.2.11 FunctionDeclarationInstantiation ( func, argumentsList ), https://tc39.es/ecma262/#sec-functiondeclarationinstantiation
ThrowCompletionOr<void> ECMAScriptFunctionObject::function_declaration_instantiation(Interpreter* interpreter)
{
    auto& vm = this->vm();
    auto& realm = *vm.current_realm();

    auto& callee_context = vm.running_execution_context();

    // Needed to extract declarations and functions
    ScopeNode const* scope_body = nullptr;
    if (is<ScopeNode>(*m_ecmascript_code))
        scope_body = static_cast<ScopeNode const*>(m_ecmascript_code.ptr());

    bool has_parameter_expressions = false;

    // FIXME: Maybe compute has duplicates at parse time? (We need to anyway since it's an error in some cases)

    bool has_duplicates = false;
    HashTable<FlyString> parameter_names;
    for (auto& parameter : m_formal_parameters) {
        if (parameter.default_value)
            has_parameter_expressions = true;

        parameter.binding.visit(
            [&](FlyString const& name) {
                if (parameter_names.set(name) != AK::HashSetResult::InsertedNewEntry)
                    has_duplicates = true;
            },
            [&](NonnullRefPtr<BindingPattern> const& pattern) {
                if (pattern->contains_expression())
                    has_parameter_expressions = true;

                pattern->for_each_bound_name([&](auto& name) {
                    if (parameter_names.set(name) != AK::HashSetResult::InsertedNewEntry)
                        has_duplicates = true;
                });
            });
    }

    auto arguments_object_needed = m_might_need_arguments_object;

    if (this_mode() == ThisMode::Lexical)
        arguments_object_needed = false;

    if (parameter_names.contains(vm.names.arguments.as_string()))
        arguments_object_needed = false;

    HashTable<FlyString> function_names;
    Vector<FunctionDeclaration const&> functions_to_initialize;

    if (scope_body) {
        scope_body->for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
            if (function_names.set(function.name()) == AK::HashSetResult::InsertedNewEntry)
                functions_to_initialize.append(function);
        });

        auto const& arguments_name = vm.names.arguments.as_string();

        if (!has_parameter_expressions && function_names.contains(arguments_name))
            arguments_object_needed = false;

        if (!has_parameter_expressions && arguments_object_needed) {
            scope_body->for_each_lexically_declared_name([&](auto const& name) {
                if (name == arguments_name)
                    arguments_object_needed = false;
            });
        }
    } else {
        arguments_object_needed = false;
    }

    Environment* environment;

    if (is_strict_mode() || !has_parameter_expressions) {
        environment = callee_context.lexical_environment;
    } else {
        environment = new_declarative_environment(*callee_context.lexical_environment);
        VERIFY(callee_context.variable_environment == callee_context.lexical_environment);
        callee_context.lexical_environment = environment;
    }

    for (auto const& parameter_name : parameter_names) {
        if (MUST(environment->has_binding(parameter_name)))
            continue;

        MUST(environment->create_mutable_binding(vm, parameter_name, false));
        if (has_duplicates)
            MUST(environment->initialize_binding(vm, parameter_name, js_undefined()));
    }

    if (arguments_object_needed) {
        Object* arguments_object;
        if (is_strict_mode() || !has_simple_parameter_list())
            arguments_object = create_unmapped_arguments_object(vm, vm.running_execution_context().arguments);
        else
            arguments_object = create_mapped_arguments_object(vm, *this, formal_parameters(), vm.running_execution_context().arguments, *environment);

        if (is_strict_mode())
            MUST(environment->create_immutable_binding(vm, vm.names.arguments.as_string(), false));
        else
            MUST(environment->create_mutable_binding(vm, vm.names.arguments.as_string(), false));

        MUST(environment->initialize_binding(vm, vm.names.arguments.as_string(), arguments_object));
        parameter_names.set(vm.names.arguments.as_string());
    }

    // We now treat parameterBindings as parameterNames.

    // The spec makes an iterator here to do IteratorBindingInitialization but we just do it manually
    auto& execution_context_arguments = vm.running_execution_context().arguments;

    size_t default_parameter_index = 0;
    for (size_t i = 0; i < m_formal_parameters.size(); ++i) {
        auto& parameter = m_formal_parameters[i];
        if (parameter.default_value)
            ++default_parameter_index;

        TRY(parameter.binding.visit(
            [&](auto const& param) -> ThrowCompletionOr<void> {
                Value argument_value;
                if (parameter.is_rest) {
                    auto array = MUST(Array::create(realm, 0));
                    for (size_t rest_index = i; rest_index < execution_context_arguments.size(); ++rest_index)
                        array->indexed_properties().append(execution_context_arguments[rest_index]);
                    argument_value = array;
                } else if (i < execution_context_arguments.size() && !execution_context_arguments[i].is_undefined()) {
                    argument_value = execution_context_arguments[i];
                } else if (parameter.default_value) {
                    if (auto* bytecode_interpreter = Bytecode::Interpreter::current()) {
                        auto value_and_frame = bytecode_interpreter->run_and_return_frame(*m_default_parameter_bytecode_executables[default_parameter_index - 1], nullptr);
                        if (value_and_frame.value.is_error())
                            return value_and_frame.value.release_error();
                        // Resulting value is in the accumulator.
                        argument_value = value_and_frame.frame->registers.at(0);
                    } else if (interpreter) {
                        argument_value = TRY(parameter.default_value->execute(*interpreter)).release_value();
                    }
                } else {
                    argument_value = js_undefined();
                }

                Environment* used_environment = has_duplicates ? nullptr : environment;

                if constexpr (IsSame<FlyString const&, decltype(param)>) {
                    Reference reference = TRY(vm.resolve_binding(param, used_environment));
                    // Here the difference from hasDuplicates is important
                    if (has_duplicates)
                        return reference.put_value(vm, argument_value);
                    else
                        return reference.initialize_referenced_binding(vm, argument_value);
                } else if (IsSame<NonnullRefPtr<BindingPattern> const&, decltype(param)>) {
                    // Here the difference from hasDuplicates is important
                    return vm.binding_initialization(param, argument_value, used_environment);
                }
            }));
    }

    Environment* var_environment;

    HashTable<FlyString> instantiated_var_names;
    if (scope_body)
        instantiated_var_names.ensure_capacity(scope_body->var_declaration_count());

    if (!has_parameter_expressions) {
        if (scope_body) {
            scope_body->for_each_var_declared_name([&](auto const& name) {
                if (!parameter_names.contains(name) && instantiated_var_names.set(name) == AK::HashSetResult::InsertedNewEntry) {
                    MUST(environment->create_mutable_binding(vm, name, false));
                    MUST(environment->initialize_binding(vm, name, js_undefined()));
                }
            });
        }
        var_environment = environment;
    } else {
        var_environment = new_declarative_environment(*environment);
        callee_context.variable_environment = var_environment;

        if (scope_body) {
            scope_body->for_each_var_declared_name([&](auto const& name) {
                if (instantiated_var_names.set(name) != AK::HashSetResult::InsertedNewEntry)
                    return;
                MUST(var_environment->create_mutable_binding(vm, name, false));

                Value initial_value;
                if (!parameter_names.contains(name) || function_names.contains(name))
                    initial_value = js_undefined();
                else
                    initial_value = MUST(environment->get_binding_value(vm, name, false));

                MUST(var_environment->initialize_binding(vm, name, initial_value));
            });
        }
    }

    // B.3.2.1 Changes to FunctionDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
    if (!m_strict && scope_body) {
        scope_body->for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
            auto& function_name = function_declaration.name();
            if (parameter_names.contains(function_name))
                return;
            // The spec says 'initializedBindings' here but that does not exist and it then adds it to 'instantiatedVarNames' so it probably means 'instantiatedVarNames'.
            if (!instantiated_var_names.contains(function_name) && function_name != vm.names.arguments.as_string()) {
                MUST(var_environment->create_mutable_binding(vm, function_name, false));
                MUST(var_environment->initialize_binding(vm, function_name, js_undefined()));
                instantiated_var_names.set(function_name);
            }

            function_declaration.set_should_do_additional_annexB_steps();
        });
    }

    Environment* lex_environment;

    // 30. If strict is false, then
    if (!is_strict_mode()) {
        // Optimization: We avoid creating empty top-level declarative environments in non-strict mode, if both of these conditions are true:
        //               1. there is no direct call to eval() within this function
        //               2. there are no lexical declarations that would go into the environment
        bool can_elide_declarative_environment = !m_contains_direct_call_to_eval && (!scope_body || !scope_body->has_lexical_declarations());
        if (can_elide_declarative_environment) {
            lex_environment = var_environment;
        } else {
            // a. Let lexEnv be NewDeclarativeEnvironment(varEnv).
            // b. NOTE: Non-strict functions use a separate Environment Record for top-level lexical declarations so that a direct eval
            //          can determine whether any var scoped declarations introduced by the eval code conflict with pre-existing top-level
            //          lexically scoped declarations. This is not needed for strict functions because a strict direct eval always places
            //          all declarations into a new Environment Record.
            lex_environment = new_declarative_environment(*var_environment);
        }
    } else {
        // 31. Else, let lexEnv be varEnv.
        lex_environment = var_environment;
    }

    // 32. Set the LexicalEnvironment of calleeContext to lexEnv.
    callee_context.lexical_environment = lex_environment;

    if (!scope_body)
        return {};

    if (!Bytecode::Interpreter::current()) {
        scope_body->for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
            declaration.for_each_bound_name([&](auto const& name) {
                if (declaration.is_constant_declaration())
                    MUST(lex_environment->create_immutable_binding(vm, name, true));
                else
                    MUST(lex_environment->create_mutable_binding(vm, name, false));
            });
        });
    }

    auto* private_environment = callee_context.private_environment;
    for (auto& declaration : functions_to_initialize) {
        auto* function = ECMAScriptFunctionObject::create(realm, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), lex_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
        MUST(var_environment->set_mutable_binding(vm, declaration.name(), function, false));
    }

    if (is<DeclarativeEnvironment>(*lex_environment))
        static_cast<DeclarativeEnvironment*>(lex_environment)->shrink_to_fit();
    if (is<DeclarativeEnvironment>(*var_environment))
        static_cast<DeclarativeEnvironment*>(var_environment)->shrink_to_fit();

    return {};
}

// 10.2.1.1 PrepareForOrdinaryCall ( F, newTarget ), https://tc39.es/ecma262/#sec-prepareforordinarycall
ThrowCompletionOr<void> ECMAScriptFunctionObject::prepare_for_ordinary_call(ExecutionContext& callee_context, Object* new_target)
{
    auto& vm = this->vm();

    // Non-standard
    callee_context.is_strict_mode = m_strict;

    // 1. Let callerContext be the running execution context.
    // 2. Let calleeContext be a new ECMAScript code execution context.

    // NOTE: In the specification, PrepareForOrdinaryCall "returns" a new callee execution context.
    // To avoid heap allocations, we put our ExecutionContext objects on the C++ stack instead.
    // Whoever calls us should put an ExecutionContext on their stack and pass that as the `callee_context`.

    // 3. Set the Function of calleeContext to F.
    callee_context.function = this;
    callee_context.function_name = m_name;

    // 4. Let calleeRealm be F.[[Realm]].
    auto* callee_realm = m_realm;
    // NOTE: This non-standard fallback is needed until we can guarantee that literally
    // every function has a realm - especially in LibWeb that's sometimes not the case
    // when a function is created while no JS is running, as we currently need to rely on
    // that (:acid2:, I know - see set_event_handler_attribute() for an example).
    // If there's no 'current realm' either, we can't continue and crash.
    if (!callee_realm)
        callee_realm = vm.current_realm();
    VERIFY(callee_realm);

    // 5. Set the Realm of calleeContext to calleeRealm.
    callee_context.realm = callee_realm;

    // 6. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
    callee_context.script_or_module = m_script_or_module;

    // 7. Let localEnv be NewFunctionEnvironment(F, newTarget).
    auto* local_environment = new_function_environment(*this, new_target);

    // 8. Set the LexicalEnvironment of calleeContext to localEnv.
    callee_context.lexical_environment = local_environment;

    // 9. Set the VariableEnvironment of calleeContext to localEnv.
    callee_context.variable_environment = local_environment;

    // 10. Set the PrivateEnvironment of calleeContext to F.[[PrivateEnvironment]].
    callee_context.private_environment = m_private_environment;

    // 11. If callerContext is not already suspended, suspend callerContext.
    // FIXME: We don't have this concept yet.

    // 12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
    TRY(vm.push_execution_context(callee_context, {}));

    // 13. NOTE: Any exception objects produced after this point are associated with calleeRealm.
    // 14. Return calleeContext.
    // NOTE: See the comment after step 2 above about how contexts are allocated on the C++ stack.
    return {};
}

// 10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument ), https://tc39.es/ecma262/#sec-ordinarycallbindthis
void ECMAScriptFunctionObject::ordinary_call_bind_this(ExecutionContext& callee_context, Value this_argument)
{
    auto& vm = this->vm();

    // 1. Let thisMode be F.[[ThisMode]].
    auto this_mode = m_this_mode;

    // If thisMode is lexical, return unused.
    if (this_mode == ThisMode::Lexical)
        return;

    // 3. Let calleeRealm be F.[[Realm]].
    auto* callee_realm = m_realm;
    // NOTE: This non-standard fallback is needed until we can guarantee that literally
    // every function has a realm - especially in LibWeb that's sometimes not the case
    // when a function is created while no JS is running, as we currently need to rely on
    // that (:acid2:, I know - see set_event_handler_attribute() for an example).
    // If there's no 'current realm' either, we can't continue and crash.
    if (!callee_realm)
        callee_realm = vm.current_realm();
    VERIFY(callee_realm);

    // 4. Let localEnv be the LexicalEnvironment of calleeContext.
    auto* local_env = callee_context.lexical_environment;

    Value this_value;

    // 5. If thisMode is strict, let thisValue be thisArgument.
    if (this_mode == ThisMode::Strict) {
        this_value = this_argument;
    }
    // 6. Else,
    else {
        // a. If thisArgument is undefined or null, then
        if (this_argument.is_nullish()) {
            // i. Let globalEnv be calleeRealm.[[GlobalEnv]].
            // ii. Assert: globalEnv is a global Environment Record.
            auto& global_env = callee_realm->global_environment();

            // iii. Let thisValue be globalEnv.[[GlobalThisValue]].
            this_value = &global_env.global_this_value();
        }
        // b. Else,
        else {
            // i. Let thisValue be ! ToObject(thisArgument).
            this_value = MUST(this_argument.to_object(vm));

            // ii. NOTE: ToObject produces wrapper objects using calleeRealm.
            VERIFY(vm.current_realm() == callee_realm);
        }
    }

    // 7. Assert: localEnv is a function Environment Record.
    // 8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not initialized.
    // 9. Perform ! localEnv.BindThisValue(thisValue).
    MUST(verify_cast<FunctionEnvironment>(local_env)->bind_this_value(vm, this_value));

    // 10. Return unused.
}

// 27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody ), https://tc39.es/ecma262/#sec-async-functions-abstract-operations-async-function-start
void ECMAScriptFunctionObject::async_function_start(PromiseCapability const& promise_capability)
{
    auto& vm = this->vm();

    // 1. Let runningContext be the running execution context.
    auto& running_context = vm.running_execution_context();

    // 2. Let asyncContext be a copy of runningContext.
    auto async_context = running_context.copy();

    // 3. NOTE: Copying the execution state is required for AsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context.

    // 4. Perform AsyncBlockStart(promiseCapability, asyncFunctionBody, asyncContext).
    async_block_start(vm, m_ecmascript_code, promise_capability, async_context);

    // 5. Return unused.
}

// 27.7.5.2 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/ecma262/#sec-asyncblockstart
void async_block_start(VM& vm, NonnullRefPtr<Statement> const& async_body, PromiseCapability const& promise_capability, ExecutionContext& async_context)
{
    auto& realm = *vm.current_realm();

    // 1. Assert: promiseCapability is a PromiseCapability Record.

    // 2. Let runningContext be the running execution context.
    auto& running_context = vm.running_execution_context();

    // 3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context the following steps will be performed:
    auto* execution_steps = NativeFunction::create(realm, "", [&async_body, &promise_capability](auto& vm) -> ThrowCompletionOr<Value> {
        // a. Let result be the result of evaluating asyncBody.
        auto result = async_body->execute(vm.interpreter());

        // b. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done.

        // c. Remove asyncContext from the execution context stack and restore the execution context that is at the top of the execution context stack as the running execution context.
        vm.pop_execution_context();

        // d. If result.[[Type]] is normal, then
        if (result.type() == Completion::Type::Normal) {
            // i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »).
            MUST(call(vm, *promise_capability.resolve(), js_undefined(), js_undefined()));
        }
        // e. Else if result.[[Type]] is return, then
        else if (result.type() == Completion::Type::Return) {
            // i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »).
            MUST(call(vm, *promise_capability.resolve(), js_undefined(), *result.value()));
        }
        // f. Else,
        else {
            // i. Assert: result.[[Type]] is throw.
            VERIFY(result.type() == Completion::Type::Throw);

            // ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »).
            MUST(call(vm, *promise_capability.reject(), js_undefined(), *result.value()));
        }
        // g. Return unused.
        // NOTE: We don't support returning an empty/optional/unused value here.
        return js_undefined();
    });

    // 4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.
    auto push_result = vm.push_execution_context(async_context, {});
    if (push_result.is_error())
        return;

    // 5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation.
    auto result = call(vm, *execution_steps, async_context.this_value.is_empty() ? js_undefined() : async_context.this_value);

    // 6. Assert: When we return here, asyncContext has already been removed from the execution context stack and runningContext is the currently running execution context.
    VERIFY(&vm.running_execution_context() == &running_context);

    // 7. Assert: result is a normal completion with a value of unused. The possible sources of this value are Await or, if the async function doesn't await anything, step 3.g above.
    VERIFY(result.has_value() && result.value().is_undefined());

    // 8. Return unused.
}

// 10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList ), https://tc39.es/ecma262/#sec-ordinarycallevaluatebody
// 15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatefunctionbody
Completion ECMAScriptFunctionObject::ordinary_call_evaluate_body()
{
    auto& vm = this->vm();
    auto& realm = *vm.current_realm();

    if (m_kind == FunctionKind::AsyncGenerator)
        return vm.throw_completion<InternalError>(ErrorType::NotImplemented, "Async Generator function execution");

    auto* bytecode_interpreter = Bytecode::Interpreter::current();

    // The bytecode interpreter can execute generator functions while the AST interpreter cannot.
    // This simply makes it create a new bytecode interpreter when one doesn't exist when executing a generator function.
    // Doing so makes it automatically switch to the bytecode interpreter to execute any future code until it exits the generator. See below.
    // This allows us to keep all of the existing functionality that works in AST while adding generator support on top of it.
    // However, this does cause an awkward situation with features not supported in bytecode, where features that work outside of generators with AST
    // suddenly stop working inside of generators.
    // This is a stop gap until bytecode mode becomes the default.
    OwnPtr<Bytecode::Interpreter> temp_bc_interpreter;
    if (m_kind == FunctionKind::Generator && !bytecode_interpreter) {
        temp_bc_interpreter = make<Bytecode::Interpreter>(realm);
        bytecode_interpreter = temp_bc_interpreter.ptr();
    }

    if (bytecode_interpreter) {
        if (!m_bytecode_executable) {
            auto compile = [&](auto& node, auto kind, auto name) -> ThrowCompletionOr<NonnullOwnPtr<Bytecode::Executable>> {
                auto executable_result = Bytecode::Generator::generate(node, kind);
                if (executable_result.is_error())
                    return vm.throw_completion<InternalError>(ErrorType::NotImplemented, executable_result.error().to_deprecated_string());

                auto bytecode_executable = executable_result.release_value();
                bytecode_executable->name = name;
                auto& passes = Bytecode::Interpreter::optimization_pipeline();
                passes.perform(*bytecode_executable);
                if constexpr (JS_BYTECODE_DEBUG) {
                    dbgln("Optimisation passes took {}us", passes.elapsed());
                    dbgln("Compiled Bytecode::Block for function '{}':", m_name);
                }
                if (Bytecode::g_dump_bytecode)
                    bytecode_executable->dump();

                return bytecode_executable;
            };

            m_bytecode_executable = TRY(compile(*m_ecmascript_code, m_kind, m_name));

            size_t default_parameter_index = 0;
            for (auto& parameter : m_formal_parameters) {
                if (!parameter.default_value)
                    continue;
                auto executable = TRY(compile(*parameter.default_value, FunctionKind::Normal, DeprecatedString::formatted("default parameter #{} for {}", default_parameter_index, m_name)));
                m_default_parameter_bytecode_executables.append(move(executable));
            }
        }
        TRY(function_declaration_instantiation(nullptr));
        auto result_and_frame = bytecode_interpreter->run_and_return_frame(*m_bytecode_executable, nullptr);

        VERIFY(result_and_frame.frame != nullptr);
        if (result_and_frame.value.is_error())
            return result_and_frame.value.release_error();

        auto result = result_and_frame.value.release_value();

        // NOTE: Running the bytecode should eventually return a completion.
        // Until it does, we assume "return" and include the undefined fallback from the call site.
        if (m_kind == FunctionKind::Normal)
            return { Completion::Type::Return, result.value_or(js_undefined()), {} };

        auto generator_object = TRY(GeneratorObject::create(realm, result, this, vm.running_execution_context().copy(), move(*result_and_frame.frame)));

        // NOTE: Async functions are entirely transformed to generator functions, and wrapped in a custom driver that returns a promise
        //       See AwaitExpression::generate_bytecode() for the transformation.
        if (m_kind == FunctionKind::Async)
            return { Completion::Type::Return, TRY(AsyncFunctionDriverWrapper::create(realm, generator_object)), {} };

        VERIFY(m_kind == FunctionKind::Generator);
        return { Completion::Type::Return, generator_object, {} };
    } else {
        if (m_kind == FunctionKind::Generator)
            return vm.throw_completion<InternalError>(ErrorType::NotImplemented, "Generator function execution in AST interpreter");
        OwnPtr<Interpreter> local_interpreter;
        Interpreter* ast_interpreter = vm.interpreter_if_exists();

        if (!ast_interpreter) {
            local_interpreter = Interpreter::create_with_existing_realm(realm);
            ast_interpreter = local_interpreter.ptr();
        }

        VM::InterpreterExecutionScope scope(*ast_interpreter);

        // FunctionBody : FunctionStatementList
        if (m_kind == FunctionKind::Normal) {
            // 1. Perform ? FunctionDeclarationInstantiation(functionObject, argumentsList).
            TRY(function_declaration_instantiation(ast_interpreter));

            // 2. Return the result of evaluating FunctionStatementList.
            return m_ecmascript_code->execute(*ast_interpreter);
        }
        // AsyncFunctionBody : FunctionBody
        else if (m_kind == FunctionKind::Async) {
            // 1. Let promiseCapability be ! NewPromiseCapability(%Promise%).
            auto promise_capability = MUST(new_promise_capability(vm, realm.intrinsics().promise_constructor()));

            // 2. Let declResult be Completion(FunctionDeclarationInstantiation(functionObject, argumentsList)).
            auto declaration_result = function_declaration_instantiation(ast_interpreter);

            // 3. If declResult is an abrupt completion, then
            if (declaration_result.is_throw_completion()) {
                // a. Perform ! Call(promiseCapability.[[Reject]], undefined, « declResult.[[Value]] »).
                MUST(call(vm, *promise_capability->reject(), js_undefined(), *declaration_result.throw_completion().value()));
            }
            // 4. Else,
            else {
                // a. Perform AsyncFunctionStart(promiseCapability, FunctionBody).
                async_function_start(promise_capability);
            }

            // 5. Return Completion Record { [[Type]]: return, [[Value]]: promiseCapability.[[Promise]], [[Target]]: empty }.
            return Completion { Completion::Type::Return, promise_capability->promise(), {} };
        }
    }
    VERIFY_NOT_REACHED();
}

void ECMAScriptFunctionObject::set_name(FlyString const& name)
{
    VERIFY(!name.is_null());
    auto& vm = this->vm();
    m_name = name;
    MUST(define_property_or_throw(vm.names.name, { .value = PrimitiveString::create(vm, m_name), .writable = false, .enumerable = false, .configurable = true }));
}

}