1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/HashTable.h>
#include <AK/NonnullRefPtr.h>
#include <AK/StringBuilder.h>
#include <LibJS/AST.h>
#include <LibJS/Lexer.h>
#include <LibJS/SourceRange.h>
#include <stdio.h>
namespace JS {
enum class Associativity {
Left,
Right
};
struct FunctionNodeParseOptions {
enum {
CheckForFunctionAndName = 1 << 0,
AllowSuperPropertyLookup = 1 << 1,
AllowSuperConstructorCall = 1 << 2,
IsGetterFunction = 1 << 3,
IsSetterFunction = 1 << 4,
IsArrowFunction = 1 << 5,
IsGeneratorFunction = 1 << 6,
};
};
class Parser {
public:
explicit Parser(Lexer lexer);
NonnullRefPtr<Program> parse_program(bool starts_in_strict_mode = false);
template<typename FunctionNodeType>
NonnullRefPtr<FunctionNodeType> parse_function_node(u8 parse_options = FunctionNodeParseOptions::CheckForFunctionAndName);
Vector<FunctionNode::Parameter> parse_formal_parameters(int& function_length, u8 parse_options = 0);
RefPtr<BindingPattern> parse_binding_pattern();
struct PrimaryExpressionParseResult {
NonnullRefPtr<Expression> result;
bool should_continue_parsing_as_expression { true };
};
NonnullRefPtr<Declaration> parse_declaration();
NonnullRefPtr<Statement> parse_statement();
NonnullRefPtr<BlockStatement> parse_block_statement();
NonnullRefPtr<BlockStatement> parse_block_statement(bool& is_strict);
NonnullRefPtr<ReturnStatement> parse_return_statement();
NonnullRefPtr<VariableDeclaration> parse_variable_declaration(bool for_loop_variable_declaration = false);
NonnullRefPtr<Statement> parse_for_statement();
NonnullRefPtr<Statement> parse_for_in_of_statement(NonnullRefPtr<ASTNode> lhs);
NonnullRefPtr<IfStatement> parse_if_statement();
NonnullRefPtr<ThrowStatement> parse_throw_statement();
NonnullRefPtr<TryStatement> parse_try_statement();
NonnullRefPtr<CatchClause> parse_catch_clause();
NonnullRefPtr<SwitchStatement> parse_switch_statement();
NonnullRefPtr<SwitchCase> parse_switch_case();
NonnullRefPtr<BreakStatement> parse_break_statement();
NonnullRefPtr<ContinueStatement> parse_continue_statement();
NonnullRefPtr<DoWhileStatement> parse_do_while_statement();
NonnullRefPtr<WhileStatement> parse_while_statement();
NonnullRefPtr<WithStatement> parse_with_statement();
NonnullRefPtr<DebuggerStatement> parse_debugger_statement();
NonnullRefPtr<ConditionalExpression> parse_conditional_expression(NonnullRefPtr<Expression> test);
NonnullRefPtr<Expression> parse_expression(int min_precedence, Associativity associate = Associativity::Right, const Vector<TokenType>& forbidden = {});
PrimaryExpressionParseResult parse_primary_expression();
NonnullRefPtr<Expression> parse_unary_prefixed_expression();
NonnullRefPtr<RegExpLiteral> parse_regexp_literal();
NonnullRefPtr<ObjectExpression> parse_object_expression();
NonnullRefPtr<ArrayExpression> parse_array_expression();
NonnullRefPtr<StringLiteral> parse_string_literal(const Token& token, bool in_template_literal = false);
NonnullRefPtr<TemplateLiteral> parse_template_literal(bool is_tagged);
NonnullRefPtr<Expression> parse_secondary_expression(NonnullRefPtr<Expression>, int min_precedence, Associativity associate = Associativity::Right);
NonnullRefPtr<CallExpression> parse_call_expression(NonnullRefPtr<Expression>);
NonnullRefPtr<NewExpression> parse_new_expression();
NonnullRefPtr<ClassDeclaration> parse_class_declaration();
NonnullRefPtr<ClassExpression> parse_class_expression(bool expect_class_name);
NonnullRefPtr<YieldExpression> parse_yield_expression();
NonnullRefPtr<Expression> parse_property_key();
NonnullRefPtr<AssignmentExpression> parse_assignment_expression(AssignmentOp, NonnullRefPtr<Expression> lhs, int min_precedence, Associativity);
NonnullRefPtr<Identifier> parse_identifier();
RefPtr<FunctionExpression> try_parse_arrow_function_expression(bool expect_parens);
RefPtr<Statement> try_parse_labelled_statement();
RefPtr<MetaProperty> try_parse_new_target_expression();
struct Error {
String message;
Optional<Position> position;
String to_string() const
{
if (!position.has_value())
return message;
return String::formatted("{} (line: {}, column: {})", message, position.value().line, position.value().column);
}
String source_location_hint(const StringView& source, const char spacer = ' ', const char indicator = '^') const
{
if (!position.has_value())
return {};
// We need to modify the source to match what the lexer considers one line - normalizing
// line terminators to \n is easier than splitting using all different LT characters.
String source_string { source };
source_string.replace("\r\n", "\n");
source_string.replace("\r", "\n");
source_string.replace(LINE_SEPARATOR, "\n");
source_string.replace(PARAGRAPH_SEPARATOR, "\n");
StringBuilder builder;
builder.append(source_string.split_view('\n', true)[position.value().line - 1]);
builder.append('\n');
for (size_t i = 0; i < position.value().column - 1; ++i)
builder.append(spacer);
builder.append(indicator);
return builder.build();
}
};
bool has_errors() const { return m_state.errors.size(); }
const Vector<Error>& errors() const { return m_state.errors; }
void print_errors() const
{
for (auto& error : m_state.errors) {
auto hint = error.source_location_hint(m_state.lexer.source());
if (!hint.is_empty())
warnln("{}", hint);
warnln("SyntaxError: {}", error.to_string());
}
}
struct TokenMemoization {
bool try_parse_arrow_function_expression_failed;
};
private:
friend class ScopePusher;
Associativity operator_associativity(TokenType) const;
bool match_expression() const;
bool match_unary_prefixed_expression() const;
bool match_secondary_expression(const Vector<TokenType>& forbidden = {}) const;
bool match_statement() const;
bool match_declaration() const;
bool match_variable_declaration() const;
bool match_identifier_name() const;
bool match_property_key() const;
bool match(TokenType type) const;
bool done() const;
void expected(const char* what);
void syntax_error(const String& message, Optional<Position> = {});
Token consume();
Token consume(TokenType type);
Token consume_and_validate_numeric_literal();
void consume_or_insert_semicolon();
void save_state();
void load_state();
void discard_saved_state();
Position position() const;
bool try_parse_arrow_function_expression_failed_at_position(const Position&) const;
void set_try_parse_arrow_function_expression_failed_at_position(const Position&, bool);
struct RulePosition {
AK_MAKE_NONCOPYABLE(RulePosition);
AK_MAKE_NONMOVABLE(RulePosition);
public:
RulePosition(Parser& parser, Position position)
: m_parser(parser)
, m_position(position)
{
m_parser.m_rule_starts.append(position);
}
~RulePosition()
{
auto last = m_parser.m_rule_starts.take_last();
VERIFY(last.line == m_position.line);
VERIFY(last.column == m_position.column);
}
const Position& position() const { return m_position; }
private:
Parser& m_parser;
Position m_position;
};
[[nodiscard]] RulePosition push_start() { return { *this, position() }; }
struct Scope : public RefCounted<Scope> {
enum Type {
Function,
Block,
};
struct HoistableDeclaration {
NonnullRefPtr<FunctionDeclaration> declaration;
NonnullRefPtr<Scope> scope; // where it is actually declared
};
Type type;
RefPtr<Scope> parent;
NonnullRefPtrVector<FunctionDeclaration> function_declarations;
Vector<HoistableDeclaration> hoisted_function_declarations;
HashTable<FlyString> lexical_declarations;
explicit Scope(Type, RefPtr<Scope>);
RefPtr<Scope> get_current_function_scope();
};
struct ParserState {
Lexer lexer;
Token current_token;
Vector<Error> errors;
Vector<NonnullRefPtrVector<VariableDeclaration>> var_scopes;
Vector<NonnullRefPtrVector<VariableDeclaration>> let_scopes;
RefPtr<Scope> current_scope;
Vector<Vector<FunctionNode::Parameter>&> function_parameters;
HashTable<StringView> labels_in_scope;
bool strict_mode { false };
bool allow_super_property_lookup { false };
bool allow_super_constructor_call { false };
bool in_function_context { false };
bool in_generator_function_context { false };
bool in_arrow_function_context { false };
bool in_break_context { false };
bool in_continue_context { false };
bool string_legacy_octal_escape_sequence_in_scope { false };
explicit ParserState(Lexer);
};
class PositionKeyTraits {
public:
static int hash(const Position& position)
{
return int_hash(position.line) ^ int_hash(position.column);
}
static bool equals(const Position& a, const Position& b)
{
return a.column == b.column && a.line == b.line;
}
};
Vector<Position> m_rule_starts;
ParserState m_state;
FlyString m_filename;
Vector<ParserState> m_saved_state;
HashMap<Position, TokenMemoization, PositionKeyTraits> m_token_memoizations;
};
}
|