1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
/*
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Badge.h>
#include <AK/Debug.h>
#include <AK/HashTable.h>
#include <AK/StackInfo.h>
#include <AK/TemporaryChange.h>
#include <LibCore/ElapsedTimer.h>
#include <LibJS/Heap/CellAllocator.h>
#include <LibJS/Heap/Handle.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Heap/HeapBlock.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/WeakContainer.h>
#include <setjmp.h>
#ifdef __serenity__
# include <serenity.h>
#endif
namespace JS {
#ifdef __serenity__
static int gc_perf_string_id;
#endif
Heap::Heap(VM& vm)
: m_vm(vm)
{
#ifdef __serenity__
auto gc_signpost_string = "Garbage collection"sv;
gc_perf_string_id = perf_register_string(gc_signpost_string.characters_without_null_termination(), gc_signpost_string.length());
#endif
if constexpr (HeapBlock::min_possible_cell_size <= 16) {
m_allocators.append(make<CellAllocator>(16));
}
static_assert(HeapBlock::min_possible_cell_size <= 24, "Heap Cell tracking uses too much data!");
m_allocators.append(make<CellAllocator>(32));
m_allocators.append(make<CellAllocator>(64));
m_allocators.append(make<CellAllocator>(96));
m_allocators.append(make<CellAllocator>(128));
m_allocators.append(make<CellAllocator>(256));
m_allocators.append(make<CellAllocator>(512));
m_allocators.append(make<CellAllocator>(1024));
m_allocators.append(make<CellAllocator>(3072));
}
Heap::~Heap()
{
vm().string_cache().clear();
collect_garbage(CollectionType::CollectEverything);
}
ALWAYS_INLINE CellAllocator& Heap::allocator_for_size(size_t cell_size)
{
for (auto& allocator : m_allocators) {
if (allocator->cell_size() >= cell_size)
return *allocator;
}
dbgln("Cannot get CellAllocator for cell size {}, largest available is {}!", cell_size, m_allocators.last()->cell_size());
VERIFY_NOT_REACHED();
}
Cell* Heap::allocate_cell(size_t size)
{
if (should_collect_on_every_allocation()) {
collect_garbage();
} else if (m_allocations_since_last_gc > m_max_allocations_between_gc) {
m_allocations_since_last_gc = 0;
collect_garbage();
} else {
++m_allocations_since_last_gc;
}
auto& allocator = allocator_for_size(size);
return allocator.allocate_cell(*this);
}
void Heap::collect_garbage(CollectionType collection_type, bool print_report)
{
VERIFY(!m_collecting_garbage);
TemporaryChange change(m_collecting_garbage, true);
#ifdef __serenity__
static size_t global_gc_counter = 0;
perf_event(PERF_EVENT_SIGNPOST, gc_perf_string_id, global_gc_counter++);
#endif
auto collection_measurement_timer = Core::ElapsedTimer::start_new();
if (collection_type == CollectionType::CollectGarbage) {
if (m_gc_deferrals) {
m_should_gc_when_deferral_ends = true;
return;
}
HashTable<Cell*> roots;
gather_roots(roots);
mark_live_cells(roots);
}
sweep_dead_cells(print_report, collection_measurement_timer);
}
void Heap::gather_roots(HashTable<Cell*>& roots)
{
vm().gather_roots(roots);
gather_conservative_roots(roots);
for (auto& handle : m_handles)
roots.set(handle.cell());
for (auto& vector : m_marked_vectors)
vector.gather_roots(roots);
if constexpr (HEAP_DEBUG) {
dbgln("gather_roots:");
for (auto* root : roots)
dbgln(" + {}", root);
}
}
__attribute__((no_sanitize("address"))) void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
{
FlatPtr dummy;
dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
jmp_buf buf;
setjmp(buf);
HashTable<FlatPtr> possible_pointers;
auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr))
possible_pointers.set(raw_jmp_buf[i]);
auto stack_reference = bit_cast<FlatPtr>(&dummy);
auto& stack_info = m_vm.stack_info();
for (FlatPtr stack_address = stack_reference; stack_address < stack_info.top(); stack_address += sizeof(FlatPtr)) {
auto data = *reinterpret_cast<FlatPtr*>(stack_address);
possible_pointers.set(data);
}
HashTable<HeapBlock*> all_live_heap_blocks;
for_each_block([&](auto& block) {
all_live_heap_blocks.set(&block);
return IterationDecision::Continue;
});
for (auto possible_pointer : possible_pointers) {
if (!possible_pointer)
continue;
dbgln_if(HEAP_DEBUG, " ? {}", (void const*)possible_pointer);
auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<Cell const*>(possible_pointer));
if (all_live_heap_blocks.contains(possible_heap_block)) {
if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
if (cell->state() == Cell::State::Live) {
dbgln_if(HEAP_DEBUG, " ?-> {}", (void const*)cell);
roots.set(cell);
} else {
dbgln_if(HEAP_DEBUG, " #-> {}", (void const*)cell);
}
}
}
}
}
class MarkingVisitor final : public Cell::Visitor {
public:
MarkingVisitor() = default;
virtual void visit_impl(Cell& cell) override
{
if (cell.is_marked())
return;
dbgln_if(HEAP_DEBUG, " ! {}", &cell);
cell.set_marked(true);
cell.visit_edges(*this);
}
};
void Heap::mark_live_cells(HashTable<Cell*> const& roots)
{
dbgln_if(HEAP_DEBUG, "mark_live_cells:");
MarkingVisitor visitor;
for (auto* root : roots)
visitor.visit(root);
for (auto& inverse_root : m_uprooted_cells)
inverse_root->set_marked(false);
m_uprooted_cells.clear();
}
void Heap::sweep_dead_cells(bool print_report, Core::ElapsedTimer const& measurement_timer)
{
dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
Vector<HeapBlock*, 32> empty_blocks;
Vector<HeapBlock*, 32> full_blocks_that_became_usable;
size_t collected_cells = 0;
size_t live_cells = 0;
size_t collected_cell_bytes = 0;
size_t live_cell_bytes = 0;
for_each_block([&](auto& block) {
bool block_has_live_cells = false;
bool block_was_full = block.is_full();
block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
if (!cell->is_marked()) {
dbgln_if(HEAP_DEBUG, " ~ {}", cell);
block.deallocate(cell);
++collected_cells;
collected_cell_bytes += block.cell_size();
} else {
cell->set_marked(false);
block_has_live_cells = true;
++live_cells;
live_cell_bytes += block.cell_size();
}
});
if (!block_has_live_cells)
empty_blocks.append(&block);
else if (block_was_full != block.is_full())
full_blocks_that_became_usable.append(&block);
return IterationDecision::Continue;
});
for (auto& weak_container : m_weak_containers)
weak_container.remove_dead_cells({});
for (auto* block : empty_blocks) {
dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
allocator_for_size(block->cell_size()).block_did_become_empty({}, *block);
}
for (auto* block : full_blocks_that_became_usable) {
dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
allocator_for_size(block->cell_size()).block_did_become_usable({}, *block);
}
if constexpr (HEAP_DEBUG) {
for_each_block([&](auto& block) {
dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
return IterationDecision::Continue;
});
}
int time_spent = measurement_timer.elapsed();
if (print_report) {
size_t live_block_count = 0;
for_each_block([&](auto&) {
++live_block_count;
return IterationDecision::Continue;
});
dbgln("Garbage collection report");
dbgln("=============================================");
dbgln(" Time spent: {} ms", time_spent);
dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
dbgln("=============================================");
}
}
void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
{
VERIFY(!m_handles.contains(impl));
m_handles.append(impl);
}
void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
{
VERIFY(m_handles.contains(impl));
m_handles.remove(impl);
}
void Heap::did_create_marked_vector(Badge<MarkedVectorBase>, MarkedVectorBase& vector)
{
VERIFY(!m_marked_vectors.contains(vector));
m_marked_vectors.append(vector);
}
void Heap::did_destroy_marked_vector(Badge<MarkedVectorBase>, MarkedVectorBase& vector)
{
VERIFY(m_marked_vectors.contains(vector));
m_marked_vectors.remove(vector);
}
void Heap::did_create_weak_container(Badge<WeakContainer>, WeakContainer& set)
{
VERIFY(!m_weak_containers.contains(set));
m_weak_containers.append(set);
}
void Heap::did_destroy_weak_container(Badge<WeakContainer>, WeakContainer& set)
{
VERIFY(m_weak_containers.contains(set));
m_weak_containers.remove(set);
}
void Heap::defer_gc(Badge<DeferGC>)
{
++m_gc_deferrals;
}
void Heap::undefer_gc(Badge<DeferGC>)
{
VERIFY(m_gc_deferrals > 0);
--m_gc_deferrals;
if (!m_gc_deferrals) {
if (m_should_gc_when_deferral_ends)
collect_garbage();
m_should_gc_when_deferral_ends = false;
}
}
void Heap::uproot_cell(Cell* cell)
{
m_uprooted_cells.append(cell);
}
}
|