summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibJS/Bytecode/Generator.cpp
blob: 555c675149577a39c5c4a23aa03bdd1ec59f3169 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
 * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Instruction.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Bytecode/Register.h>

namespace JS::Bytecode {

Generator::Generator()
    : m_string_table(make<StringTable>())
    , m_identifier_table(make<IdentifierTable>())
{
}

CodeGenerationErrorOr<NonnullOwnPtr<Executable>> Generator::generate(ASTNode const& node, FunctionKind enclosing_function_kind)
{
    Generator generator;
    generator.switch_to_basic_block(generator.make_block());
    generator.m_enclosing_function_kind = enclosing_function_kind;
    if (generator.is_in_generator_or_async_function()) {
        // Immediately yield with no value.
        auto& start_block = generator.make_block();
        generator.emit<Bytecode::Op::Yield>(Label { start_block });
        generator.switch_to_basic_block(start_block);
        // NOTE: This doesn't have to handle received throw/return completions, as GeneratorObject::resume_abrupt
        //       will not enter the generator from the SuspendedStart state and immediately completes the generator.
    }
    TRY(node.generate_bytecode(generator));
    if (generator.is_in_generator_or_async_function()) {
        // Terminate all unterminated blocks with yield return
        for (auto& block : generator.m_root_basic_blocks) {
            if (block.is_terminated())
                continue;
            generator.switch_to_basic_block(block);
            generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
            generator.emit<Bytecode::Op::Yield>(nullptr);
        }
    }

    bool is_strict_mode = false;
    if (is<Program>(node))
        is_strict_mode = static_cast<Program const&>(node).is_strict_mode();
    else if (is<FunctionBody>(node))
        is_strict_mode = static_cast<FunctionBody const&>(node).in_strict_mode();
    else if (is<FunctionDeclaration>(node))
        is_strict_mode = static_cast<FunctionDeclaration const&>(node).is_strict_mode();
    else if (is<FunctionExpression>(node))
        is_strict_mode = static_cast<FunctionExpression const&>(node).is_strict_mode();

    return adopt_own(*new Executable {
        .name = {},
        .basic_blocks = move(generator.m_root_basic_blocks),
        .string_table = move(generator.m_string_table),
        .identifier_table = move(generator.m_identifier_table),
        .number_of_registers = generator.m_next_register,
        .is_strict_mode = is_strict_mode });
}

void Generator::grow(size_t additional_size)
{
    VERIFY(m_current_basic_block);
    m_current_basic_block->grow(additional_size);
}

void* Generator::next_slot()
{
    VERIFY(m_current_basic_block);
    return m_current_basic_block->next_slot();
}

Register Generator::allocate_register()
{
    VERIFY(m_next_register != NumericLimits<u32>::max());
    return Register { m_next_register++ };
}

Label Generator::nearest_continuable_scope() const
{
    return m_continuable_scopes.last().bytecode_target;
}

void Generator::begin_variable_scope(BindingMode mode, SurroundingScopeKind kind)
{
    m_variable_scopes.append({ kind, mode, {} });
    if (mode != BindingMode::Global) {
        start_boundary(mode == BindingMode::Lexical ? BlockBoundaryType::LeaveLexicalEnvironment : BlockBoundaryType::LeaveVariableEnvironment);
        emit<Bytecode::Op::CreateEnvironment>(
            mode == BindingMode::Lexical
                ? Bytecode::Op::EnvironmentMode::Lexical
                : Bytecode::Op::EnvironmentMode::Var);
    }
}

void Generator::end_variable_scope()
{
    auto mode = m_variable_scopes.take_last().mode;
    if (mode != BindingMode::Global) {
        end_boundary(mode == BindingMode::Lexical ? BlockBoundaryType::LeaveLexicalEnvironment : BlockBoundaryType::LeaveVariableEnvironment);

        if (!m_current_basic_block->is_terminated()) {
            emit<Bytecode::Op::LeaveEnvironment>(
                mode == BindingMode::Lexical
                    ? Bytecode::Op::EnvironmentMode::Lexical
                    : Bytecode::Op::EnvironmentMode::Var);
        }
    }
}

void Generator::begin_continuable_scope(Label continue_target, Vector<FlyString> const& language_label_set)
{
    m_continuable_scopes.append({ continue_target, language_label_set });
    start_boundary(BlockBoundaryType::Continue);
}

void Generator::end_continuable_scope()
{
    m_continuable_scopes.take_last();
    end_boundary(BlockBoundaryType::Continue);
}

Label Generator::nearest_breakable_scope() const
{
    return m_breakable_scopes.last().bytecode_target;
}

void Generator::begin_breakable_scope(Label breakable_target, Vector<FlyString> const& language_label_set)
{
    m_breakable_scopes.append({ breakable_target, language_label_set });
    start_boundary(BlockBoundaryType::Break);
}

void Generator::end_breakable_scope()
{
    m_breakable_scopes.take_last();
    end_boundary(BlockBoundaryType::Break);
}

CodeGenerationErrorOr<void> Generator::emit_load_from_reference(JS::ASTNode const& node)
{
    if (is<Identifier>(node)) {
        auto& identifier = static_cast<Identifier const&>(node);
        emit<Bytecode::Op::GetVariable>(intern_identifier(identifier.string()));
        return {};
    }
    if (is<MemberExpression>(node)) {
        auto& expression = static_cast<MemberExpression const&>(node);
        TRY(expression.object().generate_bytecode(*this));

        if (expression.is_computed()) {
            auto object_reg = allocate_register();
            emit<Bytecode::Op::Store>(object_reg);

            TRY(expression.property().generate_bytecode(*this));
            emit<Bytecode::Op::GetByValue>(object_reg);
        } else if (expression.property().is_identifier()) {
            auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
            emit<Bytecode::Op::GetById>(identifier_table_ref);
        } else {
            return CodeGenerationError {
                &expression,
                "Unimplemented non-computed member expression"sv
            };
        }
        return {};
    }
    VERIFY_NOT_REACHED();
}

CodeGenerationErrorOr<void> Generator::emit_store_to_reference(JS::ASTNode const& node)
{
    if (is<Identifier>(node)) {
        auto& identifier = static_cast<Identifier const&>(node);
        emit<Bytecode::Op::SetVariable>(intern_identifier(identifier.string()));
        return {};
    }
    if (is<MemberExpression>(node)) {
        // NOTE: The value is in the accumulator, so we have to store that away first.
        auto value_reg = allocate_register();
        emit<Bytecode::Op::Store>(value_reg);

        auto& expression = static_cast<MemberExpression const&>(node);
        TRY(expression.object().generate_bytecode(*this));

        auto object_reg = allocate_register();
        emit<Bytecode::Op::Store>(object_reg);

        if (expression.is_computed()) {
            TRY(expression.property().generate_bytecode(*this));
            auto property_reg = allocate_register();
            emit<Bytecode::Op::Store>(property_reg);
            emit<Bytecode::Op::Load>(value_reg);
            emit<Bytecode::Op::PutByValue>(object_reg, property_reg);
        } else if (expression.property().is_identifier()) {
            emit<Bytecode::Op::Load>(value_reg);
            auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
            emit<Bytecode::Op::PutById>(object_reg, identifier_table_ref);
        } else {
            return CodeGenerationError {
                &expression,
                "Unimplemented non-computed member expression"sv
            };
        }
        return {};
    }

    return CodeGenerationError {
        &node,
        "Unimplemented/invalid node used a reference"sv
    };
}

CodeGenerationErrorOr<void> Generator::emit_delete_reference(JS::ASTNode const& node)
{
    if (is<Identifier>(node)) {
        auto& identifier = static_cast<Identifier const&>(node);
        emit<Bytecode::Op::DeleteVariable>(intern_identifier(identifier.string()));
        return {};
    }

    if (is<MemberExpression>(node)) {
        auto& expression = static_cast<MemberExpression const&>(node);
        TRY(expression.object().generate_bytecode(*this));

        if (expression.is_computed()) {
            auto object_reg = allocate_register();
            emit<Bytecode::Op::Store>(object_reg);

            TRY(expression.property().generate_bytecode(*this));
            emit<Bytecode::Op::DeleteByValue>(object_reg);
        } else if (expression.property().is_identifier()) {
            auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
            emit<Bytecode::Op::DeleteById>(identifier_table_ref);
        } else {
            // NOTE: Trying to delete a private field generates a SyntaxError in the parser.
            return CodeGenerationError {
                &expression,
                "Unimplemented non-computed member expression"sv
            };
        }
        return {};
    }

    // Though this will have no deletion effect, we still have to evaluate the node as it can have side effects.
    // For example: delete a(); delete ++c.b; etc.

    // 13.5.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
    // 1. Let ref be the result of evaluating UnaryExpression.
    // 2. ReturnIfAbrupt(ref).
    TRY(node.generate_bytecode(*this));

    // 3. If ref is not a Reference Record, return true.
    emit<Bytecode::Op::LoadImmediate>(Value(true));

    // NOTE: The rest of the steps are handled by Delete{Variable,ByValue,Id}.
    return {};
}

Label Generator::perform_needed_unwinds_for_labelled_break_and_return_target_block(FlyString const& break_label)
{
    size_t current_boundary = m_boundaries.size();
    for (auto& breakable_scope : m_breakable_scopes.in_reverse()) {
        for (; current_boundary > 0; --current_boundary) {
            auto boundary = m_boundaries[current_boundary - 1];
            // FIXME: Handle ReturnToFinally in a graceful manner
            //        We need to execute the finally block, but tell it to resume
            //        execution at the designated label
            if (boundary == BlockBoundaryType::Unwind) {
                emit<Bytecode::Op::LeaveUnwindContext>();
            } else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment) {
                emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Lexical);
            } else if (boundary == BlockBoundaryType::LeaveVariableEnvironment) {
                emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Var);
            } else if (boundary == BlockBoundaryType::ReturnToFinally) {
                // FIXME: We need to enter the `finally`, while still scheduling the break to happen
            } else if (boundary == BlockBoundaryType::Break) {
                // Make sure we don't process this boundary twice if the current breakable scope doesn't contain the target label.
                --current_boundary;
                break;
            }
        }

        if (breakable_scope.language_label_set.contains_slow(break_label))
            return breakable_scope.bytecode_target;
    }

    // We must have a breakable scope available that contains the label, as this should be enforced by the parser.
    VERIFY_NOT_REACHED();
}

Label Generator::perform_needed_unwinds_for_labelled_continue_and_return_target_block(FlyString const& continue_label)
{
    size_t current_boundary = m_boundaries.size();
    for (auto& continuable_scope : m_continuable_scopes.in_reverse()) {
        for (; current_boundary > 0; --current_boundary) {
            auto boundary = m_boundaries[current_boundary - 1];
            // FIXME: Handle ReturnToFinally in a graceful manner
            //        We need to execute the finally block, but tell it to resume
            //        execution at the designated label
            if (boundary == BlockBoundaryType::Unwind) {
                emit<Bytecode::Op::LeaveUnwindContext>();
            } else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment) {
                emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Lexical);
            } else if (boundary == BlockBoundaryType::LeaveVariableEnvironment) {
                emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Var);
            } else if (boundary == BlockBoundaryType::ReturnToFinally) {
                // FIXME: We need to enter the `finally`, while still scheduling the continue to happen
            } else if (boundary == BlockBoundaryType::Continue) {
                // Make sure we don't process this boundary twice if the current continuable scope doesn't contain the target label.
                --current_boundary;
                break;
            }
        }

        if (continuable_scope.language_label_set.contains_slow(continue_label))
            return continuable_scope.bytecode_target;
    }

    // We must have a continuable scope available that contains the label, as this should be enforced by the parser.
    VERIFY_NOT_REACHED();
}

DeprecatedString CodeGenerationError::to_deprecated_string()
{
    return DeprecatedString::formatted("CodeGenerationError in {}: {}", failing_node ? failing_node->class_name() : "<unknown node>", reason_literal);
}

}