1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Format.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Orientation.h>
#include <LibGfx/Point.h>
#include <LibGfx/Size.h>
#include <LibGfx/TextAlignment.h>
#include <math.h>
namespace Gfx {
template<typename T>
T abst(T value)
{
return value < 0 ? -value : value;
}
template<typename T>
class Rect {
public:
Rect() = default;
Rect(T x, T y, T width, T height)
: m_location(x, y)
, m_size(width, height)
{
}
template<typename U>
Rect(U x, U y, U width, U height)
: m_location(x, y)
, m_size(width, height)
{
}
Rect(Point<T> const& location, Size<T> const& size)
: m_location(location)
, m_size(size)
{
}
template<typename U>
Rect(Point<U> const& location, Size<U> const& size)
: m_location(location)
, m_size(size)
{
}
template<typename U>
explicit Rect(Rect<U> const& other)
: m_location(other.location())
, m_size(other.size())
{
}
[[nodiscard]] ALWAYS_INLINE T x() const { return location().x(); }
[[nodiscard]] ALWAYS_INLINE T y() const { return location().y(); }
[[nodiscard]] ALWAYS_INLINE T width() const { return m_size.width(); }
[[nodiscard]] ALWAYS_INLINE T height() const { return m_size.height(); }
ALWAYS_INLINE void set_x(T x) { m_location.set_x(x); }
ALWAYS_INLINE void set_y(T y) { m_location.set_y(y); }
ALWAYS_INLINE void set_width(T width) { m_size.set_width(width); }
ALWAYS_INLINE void set_height(T height) { m_size.set_height(height); }
[[nodiscard]] ALWAYS_INLINE Point<T> const& location() const { return m_location; }
[[nodiscard]] ALWAYS_INLINE Size<T> const& size() const { return m_size; }
[[nodiscard]] ALWAYS_INLINE bool is_null() const { return width() == 0 && height() == 0; }
[[nodiscard]] ALWAYS_INLINE bool is_empty() const { return width() <= 0 || height() <= 0; }
ALWAYS_INLINE void translate_by(T dx, T dy) { m_location.translate_by(dx, dy); }
ALWAYS_INLINE void translate_by(T dboth) { m_location.translate_by(dboth); }
ALWAYS_INLINE void translate_by(Point<T> const& delta) { m_location.translate_by(delta); }
ALWAYS_INLINE void scale_by(T dx, T dy)
{
m_location.scale_by(dx, dy);
m_size.scale_by(dx, dy);
}
ALWAYS_INLINE void scale_by(T dboth) { scale_by(dboth, dboth); }
ALWAYS_INLINE void scale_by(Point<T> const& delta) { scale_by(delta.x(), delta.y()); }
void transform_by(AffineTransform const& transform) { *this = transform.map(*this); }
[[nodiscard]] Point<T> center() const
{
return { x() + width() / 2, y() + height() / 2 };
}
ALWAYS_INLINE void set_location(Point<T> const& location)
{
m_location = location;
}
ALWAYS_INLINE void set_size(Size<T> const& size)
{
m_size = size;
}
void set_size_around(Size<T> const&, Point<T> const& fixed_point);
void set_size(T width, T height)
{
m_size.set_width(width);
m_size.set_height(height);
}
void inflate(T w, T h)
{
set_x(x() - w / 2);
set_width(width() + w);
set_y(y() - h / 2);
set_height(height() + h);
}
void inflate(Size<T> const& size)
{
set_x(x() - size.width() / 2);
set_width(width() + size.width());
set_y(y() - size.height() / 2);
set_height(height() + size.height());
}
void shrink(T w, T h)
{
set_x(x() + w / 2);
set_width(width() - w);
set_y(y() + h / 2);
set_height(height() - h);
}
void shrink(Size<T> const& size)
{
set_x(x() + size.width() / 2);
set_width(width() - size.width());
set_y(y() + size.height() / 2);
set_height(height() - size.height());
}
[[nodiscard]] Rect<T> translated(T dx, T dy) const
{
Rect<T> rect = *this;
rect.translate_by(dx, dy);
return rect;
}
[[nodiscard]] Rect<T> translated(Point<T> const& delta) const
{
Rect<T> rect = *this;
rect.translate_by(delta);
return rect;
}
[[nodiscard]] Rect<T> scaled(T sx, T sy) const
{
Rect<T> rect = *this;
rect.scale_by(sx, sy);
return rect;
}
[[nodiscard]] Rect<T> scaled(Point<T> const& s) const
{
Rect<T> rect = *this;
rect.scale_by(s);
return rect;
}
[[nodiscard]] Rect<T> transformed(AffineTransform const& transform) const
{
Rect<T> rect = *this;
rect.transform_by(transform);
return rect;
}
[[nodiscard]] Rect<T> shrunken(T w, T h) const
{
Rect<T> rect = *this;
rect.shrink(w, h);
return rect;
}
[[nodiscard]] Rect<T> shrunken(Size<T> const& size) const
{
Rect<T> rect = *this;
rect.shrink(size);
return rect;
}
[[nodiscard]] Rect<T> inflated(T w, T h) const
{
Rect<T> rect = *this;
rect.inflate(w, h);
return rect;
}
[[nodiscard]] Rect<T> inflated(Size<T> const& size) const
{
Rect<T> rect = *this;
rect.inflate(size);
return rect;
}
Rect<T> take_from_right(T w)
{
if (w > width())
w = width();
Rect<T> rect = *this;
set_width(width() - w);
rect.set_x(x() + width());
rect.set_width(w);
return rect;
}
Rect<T> take_from_left(T w)
{
if (w > width())
w = width();
Rect<T> rect = *this;
set_x(x() + w);
set_width(width() - w);
rect.set_width(w);
return rect;
}
Rect<T> take_from_top(T h)
{
if (h > height())
h = height();
Rect<T> rect = *this;
set_y(y() + h);
set_height(height() - h);
rect.set_height(h);
return rect;
}
Rect<T> take_from_bottom(T h)
{
if (h > height())
h = height();
Rect<T> rect = *this;
set_height(height() - h);
rect.set_y(y() + height());
rect.set_height(h);
return rect;
}
[[nodiscard]] bool contains_vertically(T y) const
{
return y >= top() && y <= bottom();
}
[[nodiscard]] bool contains_horizontally(T x) const
{
return x >= left() && x <= right();
}
[[nodiscard]] bool contains(T x, T y) const
{
return x >= m_location.x() && x <= right() && y >= m_location.y() && y <= bottom();
}
[[nodiscard]] ALWAYS_INLINE bool contains(Point<T> const& point) const
{
return contains(point.x(), point.y());
}
[[nodiscard]] bool contains(Rect<T> const& other) const
{
return left() <= other.left()
&& right() >= other.right()
&& top() <= other.top()
&& bottom() >= other.bottom();
}
template<typename Container>
[[nodiscard]] bool contains(Container const& others) const
{
bool have_any = false;
for (auto const& other : others) {
if (!contains(other))
return false;
have_any = true;
}
return have_any;
}
[[nodiscard]] ALWAYS_INLINE int primary_offset_for_orientation(Orientation orientation) const { return m_location.primary_offset_for_orientation(orientation); }
ALWAYS_INLINE void set_primary_offset_for_orientation(Orientation orientation, int value) { m_location.set_primary_offset_for_orientation(orientation, value); }
[[nodiscard]] ALWAYS_INLINE int secondary_offset_for_orientation(Orientation orientation) const { return m_location.secondary_offset_for_orientation(orientation); }
ALWAYS_INLINE void set_secondary_offset_for_orientation(Orientation orientation, int value) { m_location.set_secondary_offset_for_orientation(orientation, value); }
[[nodiscard]] ALWAYS_INLINE int primary_size_for_orientation(Orientation orientation) const { return m_size.primary_size_for_orientation(orientation); }
[[nodiscard]] ALWAYS_INLINE int secondary_size_for_orientation(Orientation orientation) const { return m_size.secondary_size_for_orientation(orientation); }
ALWAYS_INLINE void set_primary_size_for_orientation(Orientation orientation, int value) { m_size.set_primary_size_for_orientation(orientation, value); }
ALWAYS_INLINE void set_secondary_size_for_orientation(Orientation orientation, int value) { m_size.set_secondary_size_for_orientation(orientation, value); }
[[nodiscard]] T first_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return top();
return left();
}
[[nodiscard]] T last_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return bottom();
return right();
}
[[nodiscard]] ALWAYS_INLINE T left() const { return x(); }
[[nodiscard]] ALWAYS_INLINE T right() const { return x() + width() - 1; }
[[nodiscard]] ALWAYS_INLINE T top() const { return y(); }
[[nodiscard]] ALWAYS_INLINE T bottom() const { return y() + height() - 1; }
ALWAYS_INLINE void set_left(T left)
{
set_x(left);
}
ALWAYS_INLINE void set_top(T top)
{
set_y(top);
}
ALWAYS_INLINE void set_right(T right)
{
set_width(right - x() + 1);
}
ALWAYS_INLINE void set_bottom(T bottom)
{
set_height(bottom - y() + 1);
}
void set_right_without_resize(T new_right)
{
int delta = new_right - right();
translate_by(delta, 0);
}
void set_bottom_without_resize(T new_bottom)
{
int delta = new_bottom - bottom();
translate_by(0, delta);
}
[[nodiscard]] bool intersects_vertically(Rect<T> const& other) const
{
return top() <= other.bottom() && other.top() <= bottom();
}
[[nodiscard]] bool intersects_horizontally(Rect<T> const& other) const
{
return left() <= other.right() && other.left() <= right();
}
[[nodiscard]] bool intersects(Rect<T> const& other) const
{
return left() <= other.right()
&& other.left() <= right()
&& top() <= other.bottom()
&& other.top() <= bottom();
}
template<typename Container>
[[nodiscard]] bool intersects(Container const& others) const
{
for (auto const& other : others) {
if (intersects(other))
return true;
}
return false;
}
template<typename Container, typename Function>
IterationDecision for_each_intersected(Container const& others, Function f) const
{
if (is_empty())
return IterationDecision::Continue;
for (auto const& other : others) {
auto intersected_rect = intersected(other);
if (!intersected_rect.is_empty()) {
IterationDecision decision = f(intersected_rect);
if (decision != IterationDecision::Continue)
return decision;
}
}
return IterationDecision::Continue;
}
[[nodiscard]] Vector<Rect<T>, 4> shatter(Rect<T> const& hammer) const;
template<class U>
[[nodiscard]] bool operator==(Rect<U> const& other) const
{
return location() == other.location() && size() == other.size();
}
template<class U>
[[nodiscard]] bool operator!=(Rect<U> const& other) const
{
return !(*this == other);
}
[[nodiscard]] Rect<T> operator*(T factor) const { return { m_location * factor, m_size * factor }; }
Rect<T>& operator*=(T factor)
{
m_location *= factor;
m_size *= factor;
return *this;
}
void intersect(Rect<T> const&);
[[nodiscard]] static Rect<T> centered_on(Point<T> const& center, Size<T> const& size)
{
return { { center.x() - size.width() / 2, center.y() - size.height() / 2 }, size };
}
[[nodiscard]] static Rect<T> from_two_points(Point<T> const& a, Point<T> const& b)
{
return { min(a.x(), b.x()), min(a.y(), b.y()), abst(a.x() - b.x()), abst(a.y() - b.y()) };
}
[[nodiscard]] static Rect<T> intersection(Rect<T> const& a, Rect<T> const& b)
{
Rect<T> r = a;
r.intersect(b);
return r;
}
[[nodiscard]] ALWAYS_INLINE Rect<T> intersected(Rect<T> const& other) const
{
return intersection(*this, other);
}
[[nodiscard]] Vector<Point<T>, 2> intersected(Line<T> const&) const;
[[nodiscard]] float center_point_distance_to(Rect<T> const&) const;
[[nodiscard]] Vector<Point<T>, 2> closest_outside_center_points(Rect<T> const&) const;
[[nodiscard]] float outside_center_point_distance_to(Rect<T> const&) const;
[[nodiscard]] Rect<T> constrained_to(Rect<T> const&) const;
[[nodiscard]] Rect<T> aligned_within(Size<T> const&, Point<T> const&, TextAlignment = TextAlignment::Center) const;
[[nodiscard]] Point<T> closest_to(Point<T> const&) const;
class RelativeLocation {
friend class Rect<T>;
RelativeLocation(Rect<T> const& base_rect, Rect<T> const& other_rect);
public:
RelativeLocation() = default;
bool top_left() const { return m_top_left; }
bool top() const { return m_top; }
bool top_right() const { return m_top_right; }
bool left() const { return m_left; }
bool right() const { return m_right; }
bool bottom_left() const { return m_bottom_left; }
bool bottom() const { return m_bottom; }
bool bottom_right() const { return m_bottom_right; }
bool anywhere_above() const { return m_top_left || m_top || m_top_right; }
bool anywhere_below() const { return m_bottom_left || m_bottom || m_bottom_right; }
bool anywhere_left() const { return m_top_left || m_left || m_bottom_left; }
bool anywhere_right() const { return m_top_right || m_right || m_bottom_right; }
private:
bool m_top_left : 1 { false };
bool m_top : 1 { false };
bool m_top_right : 1 { false };
bool m_left : 1 { false };
bool m_right : 1 { false };
bool m_bottom_left : 1 { false };
bool m_bottom : 1 { false };
bool m_bottom_right : 1 { false };
};
[[nodiscard]] RelativeLocation relative_location_to(Rect<T> const& other) const
{
return RelativeLocation(*this, other);
}
enum class Side {
None = 0,
Left,
Top,
Right,
Bottom
};
[[nodiscard]] Side side(Point<T> const& point) const
{
if (is_empty())
return Side::None;
if (point.y() == y() || point.y() == bottom())
return (point.x() >= x() && point.x() <= right()) ? (point.y() == y() ? Side::Top : Side::Bottom) : Side::None;
if (point.x() == x() || point.x() == right())
return (point.y() > y() && point.y() < bottom()) ? (point.x() == x() ? Side::Left : Side::Right) : Side::None;
return Side::None;
}
[[nodiscard]] Rect<T> rect_on_side(Side side, Rect<T> const& other) const
{
switch (side) {
case Side::None:
break;
case Side::Left:
// Return the area in other that is to the left of this rect
if (other.x() < x()) {
if (other.right() >= x())
return { other.location(), { x() - other.x(), other.height() } };
else
return other;
}
break;
case Side::Top:
// Return the area in other that is above this rect
if (other.y() < y()) {
if (other.bottom() >= y())
return { other.location(), { other.width(), y() - other.y() } };
else
return other;
}
break;
case Side::Right:
// Return the area in other that is to the right of this rect
if (other.right() >= x()) {
if (other.x() <= right())
return { { right() + 1, other.y() }, { other.width() - (right() - other.x()), other.height() } };
else
return other;
}
break;
case Side::Bottom:
// Return the area in other that is below this rect
if (other.bottom() >= y()) {
if (other.y() <= bottom())
return { { other.x(), bottom() + 1 }, { other.width(), other.height() - (bottom() - other.y()) } };
else
return other;
}
break;
}
return {};
}
template<typename Container>
static bool disperse(Container& rects)
{
auto has_intersecting = [&]() {
for (auto& rect : rects) {
for (auto& other_rect : rects) {
if (&rect == &other_rect)
continue;
if (rect.intersects(other_rect))
return true;
}
}
return false;
};
if (!has_intersecting())
return false;
auto calc_delta = [&](Rect<T> const& rect) -> Point<T> {
auto rect_center = rect.center();
Point<T> center_sum;
for (auto& other_rect : rects) {
if (&other_rect == &rect)
continue;
if (rect.intersects(other_rect))
center_sum += rect_center - other_rect.center();
}
double m = sqrt((double)center_sum.x() * (double)center_sum.x() + (double)center_sum.y() * (double)center_sum.y());
if (m != 0.0)
return { (double)center_sum.x() / m + 0.5, (double)center_sum.y() / m + 0.5 };
return {};
};
Vector<Point<T>, 8> deltas;
do {
bool changes = false;
deltas.clear_with_capacity();
for (auto& rect : rects) {
auto delta = calc_delta(rect);
if (!delta.is_null())
changes = true;
deltas.append(delta);
}
// TODO: If we have no changes we would loop infinitely!
// Figure out some way to resolve this. Maybe randomly moving an intersecting rect?
VERIFY(changes);
size_t i = 0;
for (auto& rect : rects)
rect.translate_by(deltas[i++]);
} while (has_intersecting());
return true;
}
[[nodiscard]] bool is_adjacent(Rect<T> const& other) const
{
if (is_empty() || other.is_empty())
return false;
if (intersects(other))
return false;
if (other.x() + other.width() == x() || other.x() == x() + width())
return max(top(), other.top()) <= min(bottom(), other.bottom());
if (other.y() + other.height() == y() || other.y() == y() + height())
return max(left(), other.left()) <= min(right(), other.right());
return false;
}
[[nodiscard]] static Rect<T> centered_at(Point<T> const& point, Size<T> const& size)
{
return { { point.x() - size.width() / 2, point.y() - size.height() / 2 }, size };
}
[[nodiscard]] Rect<T> united(Rect<T> const&) const;
[[nodiscard]] Point<T> top_left() const { return { left(), top() }; }
[[nodiscard]] Point<T> top_right() const { return { right(), top() }; }
[[nodiscard]] Point<T> bottom_left() const { return { left(), bottom() }; }
[[nodiscard]] Point<T> bottom_right() const { return { right(), bottom() }; }
void align_within(Rect<T> const&, TextAlignment);
void center_within(Rect<T> const& other)
{
center_horizontally_within(other);
center_vertically_within(other);
}
void center_horizontally_within(Rect<T> const& other)
{
set_x(other.center().x() - width() / 2);
}
void center_vertically_within(Rect<T> const& other)
{
set_y(other.center().y() - height() / 2);
}
template<typename U>
[[nodiscard]] ALWAYS_INLINE Rect<U> to_type() const
{
return Rect<U>(*this);
}
[[nodiscard]] String to_string() const;
private:
Point<T> m_location;
Size<T> m_size;
};
using IntRect = Rect<int>;
using FloatRect = Rect<float>;
[[nodiscard]] ALWAYS_INLINE IntRect enclosing_int_rect(FloatRect const& float_rect)
{
int x1 = floorf(float_rect.x());
int y1 = floorf(float_rect.y());
int x2 = ceilf(float_rect.x() + float_rect.width());
int y2 = ceilf(float_rect.y() + float_rect.height());
return Gfx::IntRect::from_two_points({ x1, y1 }, { x2, y2 });
}
}
namespace AK {
template<typename T>
struct Formatter<Gfx::Rect<T>> : Formatter<StringView> {
void format(FormatBuilder& builder, const Gfx::Rect<T>& value)
{
Formatter<StringView>::format(builder, value.to_string());
}
};
}
namespace IPC {
bool decode(Decoder&, Gfx::IntRect&);
bool encode(Encoder&, const Gfx::IntRect&);
}
|