1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Format.h>
#include <AK/Math.h>
#include <AK/StdLibExtras.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Orientation.h>
#include <LibIPC/Forward.h>
#include <math.h>
namespace Gfx {
template<typename T>
class Point {
public:
Point() = default;
constexpr Point(T x, T y)
: m_x(x)
, m_y(y)
{
}
template<typename U>
constexpr Point(U x, U y)
: m_x(x)
, m_y(y)
{
}
template<typename U>
explicit Point(Point<U> const& other)
: m_x(other.x())
, m_y(other.y())
{
}
[[nodiscard]] ALWAYS_INLINE T x() const { return m_x; }
[[nodiscard]] ALWAYS_INLINE T y() const { return m_y; }
ALWAYS_INLINE void set_x(T x) { m_x = x; }
ALWAYS_INLINE void set_y(T y) { m_y = y; }
[[nodiscard]] ALWAYS_INLINE bool is_null() const { return !m_x && !m_y; }
[[nodiscard]] ALWAYS_INLINE bool is_empty() const { return m_x <= 0 && m_y <= 0; }
void translate_by(T dx, T dy)
{
m_x += dx;
m_y += dy;
}
ALWAYS_INLINE void translate_by(T dboth) { translate_by(dboth, dboth); }
ALWAYS_INLINE void translate_by(Point<T> const& delta) { translate_by(delta.x(), delta.y()); }
void scale_by(T dx, T dy)
{
m_x *= dx;
m_y *= dy;
}
ALWAYS_INLINE void scale_by(T dboth) { scale_by(dboth, dboth); }
ALWAYS_INLINE void scale_by(Point<T> const& delta) { scale_by(delta.x(), delta.y()); }
void transform_by(AffineTransform const& transform) { *this = transform.map(*this); }
[[nodiscard]] Point<T> translated(Point<T> const& delta) const
{
Point<T> point = *this;
point.translate_by(delta);
return point;
}
[[nodiscard]] Point<T> translated(T dx, T dy) const
{
Point<T> point = *this;
point.translate_by(dx, dy);
return point;
}
[[nodiscard]] Point<T> translated(T dboth) const
{
Point<T> point = *this;
point.translate_by(dboth, dboth);
return point;
}
[[nodiscard]] Point<T> scaled(Point<T> const& delta) const
{
Point<T> point = *this;
point.scale_by(delta);
return point;
}
[[nodiscard]] Point<T> scaled(T sx, T sy) const
{
Point<T> point = *this;
point.scale_by(sx, sy);
return point;
}
[[nodiscard]] Point<T> transformed(AffineTransform const& transform) const
{
Point<T> point = *this;
point.transform_by(transform);
return point;
}
void constrain(Rect<T> const&);
[[nodiscard]] Point<T> constrained(Rect<T> const& rect) const
{
Point<T> point = *this;
point.constrain(rect);
return point;
}
[[nodiscard]] Point<T> moved_left(T amount) const { return { x() - amount, y() }; }
[[nodiscard]] Point<T> moved_right(T amount) const { return { x() + amount, y() }; }
[[nodiscard]] Point<T> moved_up(T amount) const { return { x(), y() - amount }; }
[[nodiscard]] Point<T> moved_down(T amount) const { return { x(), y() + amount }; }
template<class U>
[[nodiscard]] bool operator==(Point<U> const& other) const
{
return x() == other.x() && y() == other.y();
}
[[nodiscard]] Point<T> operator+(Point<T> const& other) const { return { m_x + other.m_x, m_y + other.m_y }; }
Point<T>& operator+=(Point<T> const& other)
{
m_x += other.m_x;
m_y += other.m_y;
return *this;
}
[[nodiscard]] Point<T> operator-() const { return { -m_x, -m_y }; }
[[nodiscard]] Point<T> operator-(Point<T> const& other) const { return { m_x - other.m_x, m_y - other.m_y }; }
Point<T>& operator-=(Point<T> const& other)
{
m_x -= other.m_x;
m_y -= other.m_y;
return *this;
}
[[nodiscard]] Point<T> operator*(T factor) const { return { m_x * factor, m_y * factor }; }
Point<T>& operator*=(T factor)
{
m_x *= factor;
m_y *= factor;
return *this;
}
[[nodiscard]] Point<T> operator/(T factor) const { return { m_x / factor, m_y / factor }; }
Point<T>& operator/=(T factor)
{
m_x /= factor;
m_y /= factor;
return *this;
}
[[nodiscard]] T primary_offset_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? y() : x();
}
void set_primary_offset_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_y(value);
} else {
set_x(value);
}
}
[[nodiscard]] T secondary_offset_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? x() : y();
}
void set_secondary_offset_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_x(value);
} else {
set_y(value);
}
}
[[nodiscard]] T dx_relative_to(Point<T> const& other) const
{
return x() - other.x();
}
[[nodiscard]] T dy_relative_to(Point<T> const& other) const
{
return y() - other.y();
}
// Returns pixels moved from other in either direction
[[nodiscard]] T pixels_moved(Point<T> const& other) const
{
return max(AK::abs(dx_relative_to(other)), AK::abs(dy_relative_to(other)));
}
[[nodiscard]] float distance_from(Point<T> const& other) const
{
if (*this == other)
return 0;
return AK::hypot<float>(m_x - other.m_x, m_y - other.m_y);
}
[[nodiscard]] Point absolute_relative_distance_to(Point const& other) const
{
return { AK::abs(dx_relative_to(other)), AK::abs(dy_relative_to(other)) };
}
[[nodiscard]] Point end_point_for_aspect_ratio(Point const& previous_end_point, float aspect_ratio) const;
template<typename U>
requires(!IsSame<T, U>)
[[nodiscard]] Point<U> to_type() const
{
return Point<U>(*this);
}
template<typename U>
[[nodiscard]] Point<U> to_rounded() const
{
return Point<U>(roundf(x()), roundf(y()));
}
template<typename U>
requires FloatingPoint<T>
[[nodiscard]] Point<U> to_ceiled() const
{
return Point<U>(ceil(x()), ceil(y()));
}
[[nodiscard]] DeprecatedString to_string() const;
private:
T m_x { 0 };
T m_y { 0 };
};
using IntPoint = Point<int>;
using FloatPoint = Point<float>;
template<typename T>
inline Point<T> linear_interpolate(Point<T> const& p1, Point<T> const& p2, float t)
{
return Point<T> { p1.x() + t * (p2.x() - p1.x()), p1.y() + t * (p2.y() - p1.y()) };
}
template<typename T>
inline Point<T> quadratic_interpolate(Point<T> const& p1, Point<T> const& p2, Point<T> const& c1, float t)
{
return linear_interpolate(linear_interpolate(p1, c1, t), linear_interpolate(c1, p2, t), t);
}
template<typename T>
inline Point<T> cubic_interpolate(Point<T> const& p1, Point<T> const& p2, Point<T> const& c1, Point<T> const& c2, float t)
{
return linear_interpolate(quadratic_interpolate(p1, c1, c2, t), quadratic_interpolate(c1, c2, p2, t), t);
}
}
namespace AK {
template<typename T>
struct Formatter<Gfx::Point<T>> : Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Gfx::Point<T> const& value)
{
return Formatter<FormatString>::format(builder, "[{},{}]"sv, value.x(), value.y());
}
};
}
namespace IPC {
template<>
bool encode(Encoder&, Gfx::IntPoint const&);
template<>
ErrorOr<void> decode(Decoder&, Gfx::IntPoint&);
}
template<typename T>
struct AK::Traits<Gfx::Point<T>> : public AK::GenericTraits<Gfx::Point<T>> {
static constexpr bool is_trivial() { return false; }
static unsigned hash(Gfx::Point<T> const& point)
{
return pair_int_hash(AK::Traits<T>::hash(point.x()), AK::Traits<T>::hash(point.y()));
}
};
|