1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Function.h>
#include <AK/HashTable.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>
#include <math.h>
namespace Gfx {
void Path::elliptical_arc_to(const FloatPoint& point, const FloatPoint& radii, double x_axis_rotation, bool large_arc, bool sweep)
{
auto next_point = point;
double rx = radii.x();
double ry = radii.y();
double x_axis_rotation_c = cos(x_axis_rotation);
double x_axis_rotation_s = sin(x_axis_rotation);
// Find the last point
FloatPoint last_point { 0, 0 };
if (!m_segments.is_empty())
last_point = m_segments.last().point();
// Step 1 of out-of-range radii correction
if (rx == 0.0 || ry == 0.0) {
append_segment<LineSegment>(next_point);
return;
}
// Step 2 of out-of-range radii correction
if (rx < 0)
rx *= -1.0;
if (ry < 0)
ry *= -1.0;
// POSSIBLY HACK: Handle the case where both points are the same.
auto same_endpoints = next_point == last_point;
if (same_endpoints) {
if (!large_arc) {
// Nothing is going to be drawn anyway.
return;
}
// Move the endpoint by a small amount to avoid division by zero.
next_point.move_by(0.01f, 0.01f);
}
// Find (cx, cy), theta_1, theta_delta
// Step 1: Compute (x1', y1')
auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
// Step 2: Compute (cx', cy')
double x1p_sq = pow(x1p, 2.0);
double y1p_sq = pow(y1p, 2.0);
double rx_sq = pow(rx, 2.0);
double ry_sq = pow(ry, 2.0);
// Step 3 of out-of-range radii correction
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
double multiplier;
if (lambda > 1.0) {
auto lambda_sqrt = sqrt(lambda);
rx *= lambda_sqrt;
ry *= lambda_sqrt;
multiplier = 0.0;
} else {
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
multiplier = sqrt(numerator / denominator);
}
if (large_arc == sweep)
multiplier *= -1.0;
double cxp = multiplier * rx * y1p / ry;
double cyp = multiplier * -ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx', cy')
x_avg = (last_point.x() + next_point.x()) / 2.0f;
y_avg = (last_point.y() + next_point.y()) / 2.0f;
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
double theta_1 = atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
double theta_2 = atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
auto theta_delta = theta_2 - theta_1;
if (!sweep && theta_delta > 0.0) {
theta_delta -= 2 * M_PI;
} else if (sweep && theta_delta < 0) {
theta_delta += 2 * M_PI;
}
elliptical_arc_to(
next_point,
{ cx, cy },
{ rx, ry },
x_axis_rotation,
theta_1,
theta_delta);
}
void Path::close()
{
if (m_segments.size() <= 1)
return;
invalidate_split_lines();
auto& last_point = m_segments.last().point();
for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
auto& segment = m_segments[i];
if (segment.type() == Segment::Type::MoveTo) {
if (last_point == segment.point())
return;
append_segment<LineSegment>(segment.point());
return;
}
}
}
void Path::close_all_subpaths()
{
if (m_segments.size() <= 1)
return;
invalidate_split_lines();
Optional<FloatPoint> cursor, start_of_subpath;
bool is_first_point_in_subpath { false };
for (auto& segment : m_segments) {
switch (segment.type()) {
case Segment::Type::MoveTo: {
if (cursor.has_value() && !is_first_point_in_subpath) {
// This is a move from a subpath to another
// connect the two ends of this subpath before
// moving on to the next one
VERIFY(start_of_subpath.has_value());
append_segment<MoveSegment>(cursor.value());
append_segment<LineSegment>(start_of_subpath.value());
}
is_first_point_in_subpath = true;
cursor = segment.point();
break;
}
case Segment::Type::LineTo:
case Segment::Type::QuadraticBezierCurveTo:
case Segment::Type::EllipticalArcTo:
if (is_first_point_in_subpath) {
start_of_subpath = cursor;
is_first_point_in_subpath = false;
}
cursor = segment.point();
break;
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
break;
}
}
}
String Path::to_string() const
{
StringBuilder builder;
builder.append("Path { ");
for (auto& segment : m_segments) {
switch (segment.type()) {
case Segment::Type::MoveTo:
builder.append("MoveTo");
break;
case Segment::Type::LineTo:
builder.append("LineTo");
break;
case Segment::Type::QuadraticBezierCurveTo:
builder.append("QuadraticBezierCurveTo");
break;
case Segment::Type::EllipticalArcTo:
builder.append("EllipticalArcTo");
break;
case Segment::Type::Invalid:
builder.append("Invalid");
break;
}
builder.appendf("(%s", segment.point().to_string().characters());
switch (segment.type()) {
case Segment::Type::QuadraticBezierCurveTo:
builder.append(", ");
builder.append(static_cast<const QuadraticBezierCurveSegment&>(segment).through().to_string());
break;
case Segment::Type::EllipticalArcTo: {
auto& arc = static_cast<const EllipticalArcSegment&>(segment);
builder.appendff(", {}, {}, {}, {}, {}",
arc.radii().to_string().characters(),
arc.center().to_string().characters(),
arc.x_axis_rotation(),
arc.theta_1(),
arc.theta_delta());
break;
}
default:
break;
}
builder.append(") ");
}
builder.append("}");
return builder.to_string();
}
void Path::segmentize_path()
{
Vector<SplitLineSegment> segments;
float min_x = 0;
float min_y = 0;
float max_x = 0;
float max_y = 0;
auto add_point_to_bbox = [&](const Gfx::FloatPoint& point) {
float x = point.x();
float y = point.y();
min_x = min(min_x, x);
min_y = min(min_y, y);
max_x = max(max_x, x);
max_y = max(max_y, y);
};
auto add_line = [&](const auto& p0, const auto& p1) {
float ymax = p0.y(), ymin = p1.y(), x_of_ymin = p1.x(), x_of_ymax = p0.x();
auto slope = p0.x() == p1.x() ? 0 : ((float)(p0.y() - p1.y())) / ((float)(p0.x() - p1.x()));
if (p0.y() < p1.y()) {
swap(ymin, ymax);
swap(x_of_ymin, x_of_ymax);
}
segments.append({ FloatPoint(p0.x(), p0.y()),
FloatPoint(p1.x(), p1.y()),
slope == 0 ? 0 : 1 / slope,
x_of_ymin,
ymax, ymin, x_of_ymax });
add_point_to_bbox(p1);
};
FloatPoint cursor { 0, 0 };
bool first = true;
for (auto& segment : m_segments) {
switch (segment.type()) {
case Segment::Type::MoveTo:
if (first) {
min_x = segment.point().x();
min_y = segment.point().y();
max_x = segment.point().x();
max_y = segment.point().y();
} else {
add_point_to_bbox(segment.point());
}
cursor = segment.point();
break;
case Segment::Type::LineTo: {
add_line(cursor, segment.point());
cursor = segment.point();
break;
}
case Segment::Type::QuadraticBezierCurveTo: {
auto& control = static_cast<QuadraticBezierCurveSegment&>(segment).through();
Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment.point(), [&](const FloatPoint& p0, const FloatPoint& p1) {
add_line(p0, p1);
});
cursor = segment.point();
break;
}
case Segment::Type::EllipticalArcTo: {
auto& arc = static_cast<EllipticalArcSegment&>(segment);
Painter::for_each_line_segment_on_elliptical_arc(cursor, arc.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), [&](const FloatPoint& p0, const FloatPoint& p1) {
add_line(p0, p1);
});
cursor = segment.point();
break;
}
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
}
first = false;
}
// sort segments by ymax
quick_sort(segments, [](const auto& line0, const auto& line1) {
return line1.maximum_y < line0.maximum_y;
});
m_split_lines = move(segments);
m_bounding_box = Gfx::FloatRect { min_x, min_y, max_x - min_x, max_y - min_y };
}
}
|