summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/PNGWriter.cpp
blob: 7087091b3dc592bd6a1890ffc689d911ff49b847 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
 * Copyright (c) 2021, Pierre Hoffmeister
 * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2021, Aziz Berkay Yesilyurt <abyesilyurt@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Concepts.h>
#include <AK/SIMDExtras.h>
#include <AK/String.h>
#include <LibCompress/Zlib.h>
#include <LibCrypto/Checksum/CRC32.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/PNGWriter.h>

#pragma GCC diagnostic ignored "-Wpsabi"

namespace Gfx {

class PNGChunk {
    using data_length_type = u32;

public:
    explicit PNGChunk(String);
    auto const& data() const { return m_data; };
    String const& type() const { return m_type; };
    void reserve(size_t bytes) { m_data.ensure_capacity(bytes); }

    template<typename T>
    void add_as_big_endian(T);

    template<typename T>
    void add_as_little_endian(T);

    void add_u8(u8);

    template<typename T>
    void add(T*, size_t);

    void store_type();
    void store_data_length();
    u32 crc();

private:
    template<typename T>
    requires(IsUnsigned<T>) void add(T);

    ByteBuffer m_data;
    String m_type;
};

PNGChunk::PNGChunk(String type)
    : m_type(move(type))
{
    add<data_length_type>(0);
    store_type();
}

void PNGChunk::store_type()
{
    m_data.append(type().bytes());
}

void PNGChunk::store_data_length()
{
    auto data_length = BigEndian<u32>(m_data.size() - sizeof(data_length_type) - m_type.length());
    __builtin_memcpy(m_data.offset_pointer(0), &data_length, sizeof(u32));
}

u32 PNGChunk::crc()
{
    u32 crc = Crypto::Checksum::CRC32({ m_data.offset_pointer(sizeof(data_length_type)), m_data.size() - sizeof(data_length_type) }).digest();
    return crc;
}

template<typename T>
requires(IsUnsigned<T>) void PNGChunk::add(T data)
{
    m_data.append(&data, sizeof(T));
}

template<typename T>
void PNGChunk::add(T* data, size_t size)
{
    m_data.append(data, size);
}

template<typename T>
void PNGChunk::add_as_little_endian(T data)
{
    auto data_out = AK::convert_between_host_and_little_endian(data);
    add(data_out);
}

template<typename T>
void PNGChunk::add_as_big_endian(T data)
{
    auto data_out = AK::convert_between_host_and_big_endian(data);
    add(data_out);
}

void PNGChunk::add_u8(u8 data)
{
    add(data);
}

void PNGWriter::add_chunk(PNGChunk& png_chunk)
{
    png_chunk.store_data_length();
    u32 crc = png_chunk.crc();
    png_chunk.add_as_big_endian(crc);
    m_data.append(png_chunk.data().data(), png_chunk.data().size());
}

void PNGWriter::add_png_header()
{
    m_data.append(PNG::header.data(), PNG::header.size());
}

void PNGWriter::add_IHDR_chunk(u32 width, u32 height, u8 bit_depth, PNG::ColorType color_type, u8 compression_method, u8 filter_method, u8 interlace_method)
{
    PNGChunk png_chunk { "IHDR" };
    png_chunk.add_as_big_endian(width);
    png_chunk.add_as_big_endian(height);
    png_chunk.add_u8(bit_depth);
    png_chunk.add_u8(to_underlying(color_type));
    png_chunk.add_u8(compression_method);
    png_chunk.add_u8(filter_method);
    png_chunk.add_u8(interlace_method);
    add_chunk(png_chunk);
}

void PNGWriter::add_IEND_chunk()
{
    PNGChunk png_chunk { "IEND" };
    add_chunk(png_chunk);
}

union [[gnu::packed]] Pixel {
    ARGB32 rgba { 0 };
    struct {
        u8 red;
        u8 green;
        u8 blue;
        u8 alpha;
    };
    AK::SIMD::u8x4 simd;

    ALWAYS_INLINE static AK::SIMD::u8x4 gfx_to_png(Pixel pixel)
    {
        swap(pixel.red, pixel.blue);
        return pixel.simd;
    }
};
static_assert(AssertSize<Pixel, 4>());

void PNGWriter::add_IDAT_chunk(Gfx::Bitmap const& bitmap)
{
    PNGChunk png_chunk { "IDAT" };
    png_chunk.reserve(bitmap.size_in_bytes());

    ByteBuffer uncompressed_block_data;
    uncompressed_block_data.ensure_capacity(bitmap.size_in_bytes() + bitmap.height());

    Pixel dummy_scanline[bitmap.width()];
    auto const* scanline_minus_1 = dummy_scanline;

    for (int y = 0; y < bitmap.height(); ++y) {
        auto* scanline = reinterpret_cast<Pixel const*>(bitmap.scanline(y));

        struct Filter {
            PNG::FilterType type;
            ByteBuffer buffer {};
            int sum = 0;

            void append(u8 byte)
            {
                buffer.append(byte);
                sum += static_cast<i8>(byte);
            }

            void append(AK::SIMD::u8x4 simd)
            {
                append(simd[0]);
                append(simd[1]);
                append(simd[2]);
                append(simd[3]);
            }
        };

        Filter none_filter { .type = PNG::FilterType::None };
        none_filter.buffer.ensure_capacity(sizeof(Pixel) * bitmap.height());

        Filter sub_filter { .type = PNG::FilterType::Sub };
        sub_filter.buffer.ensure_capacity(sizeof(Pixel) * bitmap.height());

        Filter up_filter { .type = PNG::FilterType::Up };
        up_filter.buffer.ensure_capacity(sizeof(Pixel) * bitmap.height());

        Filter average_filter { .type = PNG::FilterType::Average };
        average_filter.buffer.ensure_capacity(sizeof(ARGB32) * bitmap.height());

        Filter paeth_filter { .type = PNG::FilterType::Paeth };
        paeth_filter.buffer.ensure_capacity(sizeof(ARGB32) * bitmap.height());

        auto pixel_x_minus_1 = Pixel::gfx_to_png(*dummy_scanline);
        auto pixel_xy_minus_1 = Pixel::gfx_to_png(*dummy_scanline);

        for (int x = 0; x < bitmap.width(); ++x) {
            auto pixel = Pixel::gfx_to_png(scanline[x]);
            auto pixel_y_minus_1 = Pixel::gfx_to_png(scanline_minus_1[x]);

            none_filter.append(pixel);

            sub_filter.append(pixel - pixel_x_minus_1);

            up_filter.append(pixel - pixel_y_minus_1);

            // The sum Orig(a) + Orig(b) shall be performed without overflow (using at least nine-bit arithmetic).
            auto sum = AK::SIMD::to_u16x4(pixel_x_minus_1) + AK::SIMD::to_u16x4(pixel_y_minus_1);
            auto average = AK::SIMD::to_u8x4(sum / 2);
            average_filter.append(pixel - average);

            paeth_filter.append(pixel - PNG::paeth_predictor(pixel_x_minus_1, pixel_y_minus_1, pixel_xy_minus_1));

            pixel_x_minus_1 = pixel;
            pixel_xy_minus_1 = pixel_y_minus_1;
        }

        scanline_minus_1 = scanline;

        // 12.8 Filter selection: https://www.w3.org/TR/PNG/#12Filter-selection
        // For best compression of truecolour and greyscale images, the recommended approach
        // is adaptive filtering in which a filter is chosen for each scanline.
        // The following simple heuristic has performed well in early tests:
        // compute the output scanline using all five filters, and select the filter that gives the smallest sum of absolute values of outputs.
        // (Consider the output bytes as signed differences for this test.)
        Filter& best_filter = none_filter;
        if (abs(best_filter.sum) > abs(sub_filter.sum))
            best_filter = sub_filter;
        if (abs(best_filter.sum) > abs(up_filter.sum))
            best_filter = up_filter;
        if (abs(best_filter.sum) > abs(average_filter.sum))
            best_filter = average_filter;
        if (abs(best_filter.sum) > abs(paeth_filter.sum))
            best_filter = paeth_filter;

        uncompressed_block_data.append(to_underlying(best_filter.type));
        uncompressed_block_data.append(best_filter.buffer);
    }

    auto maybe_zlib_buffer = Compress::ZlibCompressor::compress_all(uncompressed_block_data, Compress::ZlibCompressionLevel::Best);
    if (!maybe_zlib_buffer.has_value()) {
        // FIXME: Handle errors.
        VERIFY_NOT_REACHED();
    }
    auto zlib_buffer = maybe_zlib_buffer.release_value();

    png_chunk.add(zlib_buffer.data(), zlib_buffer.size());
    add_chunk(png_chunk);
}

ByteBuffer PNGWriter::encode(Gfx::Bitmap const& bitmap)
{
    PNGWriter writer;
    writer.add_png_header();
    writer.add_IHDR_chunk(bitmap.width(), bitmap.height(), 8, PNG::ColorType::TruecolorWithAlpha, 0, 0, 0);
    writer.add_IDAT_chunk(bitmap);
    writer.add_IEND_chunk();
    // FIXME: Handle OOM failure.
    return ByteBuffer::copy(writer.m_data).release_value_but_fixme_should_propagate_errors();
}

}