1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@gmx.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <LibGfx/Matrix.h>
#include <LibGfx/Vector3.h>
#include <math.h>
namespace Gfx {
template<typename T>
class Matrix4x4 final : public Matrix<4, T> {
public:
Matrix4x4() = default;
Matrix4x4(T _11, T _12, T _13, T _14,
T _21, T _22, T _23, T _24,
T _31, T _32, T _33, T _34,
T _41, T _42, T _43, T _44)
: m_elements {
_11, _12, _13, _14,
_21, _22, _23, _24,
_31, _32, _33, _34,
_41, _42, _43, _44
}
{
}
auto elements() const { return m_elements; }
auto elements() { return m_elements; }
Matrix4x4 operator*(const Matrix4x4& other) const
{
Matrix4x4 product;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
product.m_elements[i][j] = m_elements[0][j] * other.m_elements[i][0]
+ m_elements[1][j] * other.m_elements[i][1]
+ m_elements[2][j] * other.m_elements[i][2]
+ m_elements[3][j] * other.m_elements[i][3];
}
}
return product;
}
Vector3<T> transform_point(const Vector3<T>& p) const
{
return Vector3<T>(
p.x() * m_elements[0][0] + p.y() * m_elements[1][0] + p.z() * m_elements[2][0] + m_elements[3][0],
p.x() * m_elements[0][1] + p.y() * m_elements[1][1] + p.z() * m_elements[2][1] + m_elements[3][1],
p.x() * m_elements[0][2] + p.y() * m_elements[1][2] + p.z() * m_elements[2][2] + m_elements[3][2]);
}
static Matrix4x4 translate(const Vector3<T>& p)
{
return Matrix4x4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
p.x(), p.y(), p.z(), 1);
}
static Matrix4x4 scale(const Vector3<T>& s)
{
return Matrix4x4(
s.x(), 0, 0, 0,
0, s.y(), 0, 0,
0, 0, s.z(), 0,
0, 0, 0, 1);
}
static Matrix4x4 rotate(const Vector3<T>& axis, T angle)
{
T c = cos(angle);
T s = sin(angle);
T t = 1 - c;
T x = axis.x();
T y = axis.y();
T z = axis.z();
return Matrix4x4(
t * x * x + c, t * x * y - z * s, t * x * z + y * s, 0,
t * x * y + z * s, t * y * y + c, t * y * z - x * s, 0,
t * x * z - y * s, t * y * z + x * s, t * z * z + c, 0,
0, 0, 0, 1);
}
private:
T m_elements[4][4];
};
typedef Matrix4x4<float> FloatMatrix4x4;
typedef Matrix4x4<double> DoubleMatrix4x4;
}
using Gfx::DoubleMatrix4x4;
using Gfx::FloatMatrix4x4;
using Gfx::Matrix4x4;
|