1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Types.h>
#include <initializer_list>
namespace Gfx {
template<size_t N, typename T>
class Matrix {
template<size_t U, typename V>
friend class Matrix;
public:
static constexpr size_t Size = N;
constexpr Matrix() = default;
constexpr Matrix(std::initializer_list<T> elements)
{
VERIFY(elements.size() == N * N);
size_t i = 0;
for (auto& element : elements) {
m_elements[i / N][i % N] = element;
++i;
}
}
template<typename... Args>
constexpr Matrix(Args... args)
: Matrix({ (T)args... })
{
}
Matrix(Matrix const& other)
{
__builtin_memcpy(m_elements, other.elements(), sizeof(T) * N * N);
}
Matrix& operator=(Matrix const& other)
{
__builtin_memcpy(m_elements, other.elements(), sizeof(T) * N * N);
return *this;
}
constexpr auto elements() const { return m_elements; }
constexpr auto elements() { return m_elements; }
constexpr Matrix operator*(Matrix const& other) const
{
Matrix product;
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {
auto& element = product.m_elements[i][j];
if constexpr (N == 4) {
element = m_elements[i][0] * other.m_elements[0][j]
+ m_elements[i][1] * other.m_elements[1][j]
+ m_elements[i][2] * other.m_elements[2][j]
+ m_elements[i][3] * other.m_elements[3][j];
} else if constexpr (N == 3) {
element = m_elements[i][0] * other.m_elements[0][j]
+ m_elements[i][1] * other.m_elements[1][j]
+ m_elements[i][2] * other.m_elements[2][j];
} else if constexpr (N == 2) {
element = m_elements[i][0] * other.m_elements[0][j]
+ m_elements[i][1] * other.m_elements[1][j];
} else if constexpr (N == 1) {
element = m_elements[i][0] * other.m_elements[0][j];
} else {
T value {};
for (size_t k = 0; k < N; ++k)
value += m_elements[i][k] * other.m_elements[k][j];
element = value;
}
}
}
return product;
}
constexpr Matrix operator/(T divisor) const
{
Matrix division;
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j)
division.m_elements[i][j] = m_elements[i][j] / divisor;
}
return division;
}
[[nodiscard]] constexpr Matrix adjugate() const
{
if constexpr (N == 1)
return Matrix(1);
Matrix adjugate;
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {
int sign = (i + j) % 2 == 0 ? 1 : -1;
adjugate.m_elements[j][i] = sign * first_minor(i, j);
}
}
return adjugate;
}
[[nodiscard]] constexpr T determinant() const
{
if constexpr (N == 1) {
return m_elements[0][0];
} else {
T result = {};
int sign = 1;
for (size_t j = 0; j < N; ++j) {
result += sign * m_elements[0][j] * first_minor(0, j);
sign *= -1;
}
return result;
}
}
[[nodiscard]] constexpr T first_minor(size_t skip_row, size_t skip_column) const
{
static_assert(N > 1);
VERIFY(skip_row < N);
VERIFY(skip_column < N);
Matrix<N - 1, T> first_minor;
constexpr auto new_size = N - 1;
size_t k = 0;
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {
if (i == skip_row || j == skip_column)
continue;
first_minor.elements()[k / new_size][k % new_size] = m_elements[i][j];
++k;
}
}
return first_minor.determinant();
}
[[nodiscard]] constexpr static Matrix identity()
{
Matrix result;
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {
if (i == j)
result.m_elements[i][j] = 1;
else
result.m_elements[i][j] = 0;
}
}
return result;
}
[[nodiscard]] constexpr Matrix inverse() const
{
return adjugate() / determinant();
}
[[nodiscard]] constexpr Matrix transpose() const
{
Matrix result;
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j)
result.m_elements[i][j] = m_elements[j][i];
}
return result;
}
template<size_t U>
[[nodiscard]] constexpr Matrix<U, T> submatrix_from_topleft() const requires(U > 0 && U < N)
{
Matrix<U, T> result;
for (size_t i = 0; i < U; ++i) {
for (size_t j = 0; j < U; ++j)
result.m_elements[i][j] = m_elements[i][j];
}
return result;
}
private:
T m_elements[N][N];
};
}
using Gfx::Matrix;
|