summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/JPGLoader.cpp
blob: 260e3322ae647f9f363920a541e8491d683cf62d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
/*
 * Copyright (c) 2020, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Debug.h>
#include <AK/Error.h>
#include <AK/HashMap.h>
#include <AK/Math.h>
#include <AK/MemoryStream.h>
#include <AK/Try.h>
#include <AK/Vector.h>
#include <LibGfx/JPGLoader.h>

#define JPG_INVALID 0X0000

#define JPG_APPN0 0XFFE0
#define JPG_APPN1 0XFFE1
#define JPG_APPN2 0XFFE2
#define JPG_APPN3 0XFFE3
#define JPG_APPN4 0XFFE4
#define JPG_APPN5 0XFFE5
#define JPG_APPN6 0XFFE6
#define JPG_APPN7 0XFFE7
#define JPG_APPN8 0XFFE8
#define JPG_APPN9 0XFFE9
#define JPG_APPNA 0XFFEA
#define JPG_APPNB 0XFFEB
#define JPG_APPNC 0XFFEC
#define JPG_APPND 0XFFED
#define JPG_APPNE 0xFFEE
#define JPG_APPNF 0xFFEF

#define JPG_RESERVED1 0xFFF1
#define JPG_RESERVED2 0xFFF2
#define JPG_RESERVED3 0xFFF3
#define JPG_RESERVED4 0xFFF4
#define JPG_RESERVED5 0xFFF5
#define JPG_RESERVED6 0xFFF6
#define JPG_RESERVED7 0xFFF7
#define JPG_RESERVED8 0xFFF8
#define JPG_RESERVED9 0xFFF9
#define JPG_RESERVEDA 0xFFFA
#define JPG_RESERVEDB 0xFFFB
#define JPG_RESERVEDC 0xFFFC
#define JPG_RESERVEDD 0xFFFD

#define JPG_RST0 0xFFD0
#define JPG_RST1 0xFFD1
#define JPG_RST2 0xFFD2
#define JPG_RST3 0xFFD3
#define JPG_RST4 0xFFD4
#define JPG_RST5 0xFFD5
#define JPG_RST6 0xFFD6
#define JPG_RST7 0xFFD7

#define JPG_DHP 0xFFDE
#define JPG_EXP 0xFFDF

#define JPG_DHT 0XFFC4
#define JPG_DQT 0XFFDB
#define JPG_EOI 0xFFD9
#define JPG_RST 0XFFDD
#define JPG_SOF0 0XFFC0
#define JPG_SOF2 0xFFC2
#define JPG_SOI 0XFFD8
#define JPG_SOS 0XFFDA
#define JPG_COM 0xFFFE

namespace Gfx {

constexpr static u8 zigzag_map[64] {
    0, 1, 8, 16, 9, 2, 3, 10,
    17, 24, 32, 25, 18, 11, 4, 5,
    12, 19, 26, 33, 40, 48, 41, 34,
    27, 20, 13, 6, 7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36,
    29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46,
    53, 60, 61, 54, 47, 55, 62, 63
};

using Marker = u16;

/**
 * MCU means group of data units that are coded together. A data unit is an 8x8
 * block of component data. In interleaved scans, number of non-interleaved data
 * units of a component C is Ch * Cv, where Ch and Cv represent the horizontal &
 * vertical subsampling factors of the component, respectively. A MacroBlock is
 * an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when
 * we're done decoding the huffman stream.
 */
struct Macroblock {
    union {
        i32 y[64] = { 0 };
        i32 r[64];
    };

    union {
        i32 cb[64] = { 0 };
        i32 g[64];
    };

    union {
        i32 cr[64] = { 0 };
        i32 b[64];
    };
};

struct MacroblockMeta {
    u32 total { 0 };
    u32 padded_total { 0 };
    u32 hcount { 0 };
    u32 vcount { 0 };
    u32 hpadded_count { 0 };
    u32 vpadded_count { 0 };
};

struct ComponentSpec {
    u8 id { 0 };
    u8 hsample_factor { 1 }; // Horizontal sampling factor.
    u8 vsample_factor { 1 }; // Vertical sampling factor.
    u8 ac_destination_id { 0 };
    u8 dc_destination_id { 0 };
    u8 qtable_id { 0 }; // Quantization table id.
};

struct StartOfFrame {

    // Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
    enum class FrameType {
        Baseline_DCT = 0,
        Extended_Sequential_DCT = 1,
        Progressive_DCT = 2,
        Sequential_Lossless = 3,
        Differential_Sequential_DCT = 5,
        Differential_Progressive_DCT = 6,
        Differential_Sequential_Lossless = 7,
        Extended_Sequential_DCT_Arithmetic = 9,
        Progressive_DCT_Arithmetic = 10,
        Sequential_Lossless_Arithmetic = 11,
        Differential_Sequential_DCT_Arithmetic = 13,
        Differential_Progressive_DCT_Arithmetic = 14,
        Differential_Sequential_Lossless_Arithmetic = 15,
    };

    FrameType type { FrameType::Baseline_DCT };
    u8 precision { 0 };
    u16 height { 0 };
    u16 width { 0 };
};

struct HuffmanTableSpec {
    u8 type { 0 };
    u8 destination_id { 0 };
    u8 code_counts[16] = { 0 };
    Vector<u8> symbols;
    Vector<u16> codes;
};

struct HuffmanStreamState {
    Vector<u8> stream;
    u8 bit_offset { 0 };
    size_t byte_offset { 0 };
};

struct JPGLoadingContext {
    enum State {
        NotDecoded = 0,
        Error,
        FrameDecoded,
        BitmapDecoded
    };

    State state { State::NotDecoded };
    u8 const* data { nullptr };
    size_t data_size { 0 };
    u32 luma_table[64] = { 0 };
    u32 chroma_table[64] = { 0 };
    StartOfFrame frame;
    u8 hsample_factor { 0 };
    u8 vsample_factor { 0 };
    u8 component_count { 0 };
    Vector<ComponentSpec, 3> components;
    RefPtr<Gfx::Bitmap> bitmap;
    u16 dc_reset_interval { 0 };
    HashMap<u8, HuffmanTableSpec> dc_tables;
    HashMap<u8, HuffmanTableSpec> ac_tables;
    HuffmanStreamState huffman_stream;
    i32 previous_dc_values[3] = { 0 };
    MacroblockMeta mblock_meta;
};

static void generate_huffman_codes(HuffmanTableSpec& table)
{
    unsigned code = 0;
    for (auto number_of_codes : table.code_counts) {
        for (int i = 0; i < number_of_codes; i++)
            table.codes.append(code++);
        code <<= 1;
    }
}

static ErrorOr<size_t> read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1)
{
    if (count > (8 * sizeof(size_t))) {
        dbgln_if(JPG_DEBUG, "Can't read {} bits at once!", count);
        return Error::from_string_literal("Reading too much huffman bits at once");
    }
    size_t value = 0;
    while (count--) {
        if (hstream.byte_offset >= hstream.stream.size()) {
            dbgln_if(JPG_DEBUG, "Huffman stream exhausted. This could be an error!");
            return Error::from_string_literal("Huffman stream exhausted.");
        }
        u8 current_byte = hstream.stream[hstream.byte_offset];
        u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first.
        hstream.bit_offset++;
        value = (value << 1) | (size_t)current_bit;
        if (hstream.bit_offset == 8) {
            hstream.byte_offset++;
            hstream.bit_offset = 0;
        }
    }
    return value;
}

static ErrorOr<u8> get_next_symbol(HuffmanStreamState& hstream, HuffmanTableSpec const& table)
{
    unsigned code = 0;
    size_t code_cursor = 0;
    for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits.
        auto result = TRY(read_huffman_bits(hstream));
        code = (code << 1) | (i32)result;
        for (int j = 0; j < table.code_counts[i]; j++) {
            if (code == table.codes[code_cursor])
                return table.symbols[code_cursor];
            code_cursor++;
        }
    }

    dbgln_if(JPG_DEBUG, "If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!");
    return Error::from_string_literal("This kind of JPEG is not yet supported by the decoder");
}

static inline i32* get_component(Macroblock& block, unsigned component)
{
    switch (component) {
    case 0:
        return block.y;
    case 1:
        return block.cb;
    default:
        return block.cr;
    }
}

/**
 * Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
 * Depending on the sampling factors, we may not see triples of y, cb, cr in that
 * order. If sample factors differ from one, we'll read more than one block of y-
 * coefficients before we get to read a cb-cr block.

 * In the function below, `hcursor` and `vcursor` denote the location of the block
 * we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
 * that iterate over the vertical and horizontal subsampling factors, respectively.
 * When we finish one iteration of the innermost loop, we'll have the coefficients
 * of one of the components of block at position `mb_index`. When the outermost loop
 * finishes first iteration, we'll have all the luminance coefficients for all the
 * macroblocks that share the chrominance data. Next two iterations (assuming that
 * we are dealing with three components) will fill up the blocks with chroma data.
 */
static ErrorOr<void> build_macroblocks(JPGLoadingContext& context, Vector<Macroblock>& macroblocks, u32 hcursor, u32 vcursor)
{
    for (unsigned component_i = 0; component_i < context.component_count; component_i++) {
        auto& component = context.components[component_i];

        if (component.dc_destination_id >= context.dc_tables.size())
            return Error::from_string_literal("DC destination ID is greater than number of DC tables");
        if (component.ac_destination_id >= context.ac_tables.size())
            return Error::from_string_literal("AC destination ID is greater than number of AC tables");

        for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
            for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
                u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
                Macroblock& block = macroblocks[mb_index];

                auto& dc_table = context.dc_tables.find(component.dc_destination_id)->value;
                auto& ac_table = context.ac_tables.find(component.ac_destination_id)->value;

                // For DC coefficients, symbol encodes the length of the coefficient.
                auto dc_length = TRY(get_next_symbol(context.huffman_stream, dc_table));
                if (dc_length > 11) {
                    dbgln_if(JPG_DEBUG, "DC coefficient too long: {}!", dc_length);
                    return Error::from_string_literal("DC coefficient too long");
                }

                // DC coefficients are encoded as the difference between previous and current DC values.
                i32 dc_diff = TRY(read_huffman_bits(context.huffman_stream, dc_length));

                // If MSB in diff is 0, the difference is -ve. Otherwise +ve.
                if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
                    dc_diff -= (1 << dc_length) - 1;

                auto select_component = get_component(block, component_i);
                auto& previous_dc = context.previous_dc_values[component_i];
                select_component[0] = previous_dc += dc_diff;

                // Compute the AC coefficients.
                for (int j = 1; j < 64;) {
                    // AC symbols encode 2 pieces of information, the high 4 bits represent
                    // number of zeroes to be stuffed before reading the coefficient. Low 4
                    // bits represent the magnitude of the coefficient.
                    auto ac_symbol = TRY(get_next_symbol(context.huffman_stream, ac_table));
                    if (ac_symbol == 0)
                        break;

                    // ac_symbol = 0xF0 means we need to skip 16 zeroes.
                    u8 run_length = ac_symbol == 0xF0 ? 16 : ac_symbol >> 4;
                    j += run_length;

                    if (j >= 64) {
                        dbgln_if(JPG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", j, run_length);
                        return Error::from_string_literal("Run-length exceeded boundaries");
                    }

                    u8 coeff_length = ac_symbol & 0x0F;
                    if (coeff_length > 10) {
                        dbgln_if(JPG_DEBUG, "AC coefficient too long: {}!", coeff_length);
                        return Error::from_string_literal("AC coefficient too long");
                    }

                    if (coeff_length != 0) {
                        i32 ac_coefficient = TRY(read_huffman_bits(context.huffman_stream, coeff_length));
                        if (ac_coefficient < (1 << (coeff_length - 1)))
                            ac_coefficient -= (1 << coeff_length) - 1;

                        select_component[zigzag_map[j++]] = ac_coefficient;
                    }
                }
            }
        }
    }

    return {};
}

static ErrorOr<Vector<Macroblock>> decode_huffman_stream(JPGLoadingContext& context)
{
    Vector<Macroblock> macroblocks;
    macroblocks.resize(context.mblock_meta.padded_total);

    if constexpr (JPG_DEBUG) {
        dbgln("Image width: {}", context.frame.width);
        dbgln("Image height: {}", context.frame.height);
        dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count);
        dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count);
        dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total);
    }

    // Compute huffman codes for DC and AC tables.
    for (auto it = context.dc_tables.begin(); it != context.dc_tables.end(); ++it)
        generate_huffman_codes(it->value);

    for (auto it = context.ac_tables.begin(); it != context.ac_tables.end(); ++it)
        generate_huffman_codes(it->value);

    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
            if (context.dc_reset_interval > 0) {
                if (i % context.dc_reset_interval == 0) {
                    context.previous_dc_values[0] = 0;
                    context.previous_dc_values[1] = 0;
                    context.previous_dc_values[2] = 0;

                    // Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
                    //  the 0th bit of the next byte.
                    if (context.huffman_stream.byte_offset < context.huffman_stream.stream.size()) {
                        if (context.huffman_stream.bit_offset > 0) {
                            context.huffman_stream.bit_offset = 0;
                            context.huffman_stream.byte_offset++;
                        }

                        // Skip the restart marker (RSTn).
                        context.huffman_stream.byte_offset++;
                    }
                }
            }

            if (auto result = build_macroblocks(context, macroblocks, hcursor, vcursor); result.is_error()) {
                if constexpr (JPG_DEBUG) {
                    dbgln("Failed to build Macroblock {}", i);
                    dbgln("Huffman stream byte offset {}", context.huffman_stream.byte_offset);
                    dbgln("Huffman stream bit offset {}", context.huffman_stream.bit_offset);
                }
                return result.release_error();
            }
        }
    }

    return macroblocks;
}

static inline ErrorOr<void> ensure_bounds_okay(const size_t cursor, const size_t delta, const size_t bound)
{
    if (Checked<size_t>::addition_would_overflow(delta, cursor))
        return Error::from_string_literal("Bounds are not ok: addition would overflow");
    if (delta + cursor >= bound)
        return Error::from_string_literal("Bounds are not ok");
    return {};
}

static inline bool is_valid_marker(const Marker marker)
{
    if (marker >= JPG_APPN0 && marker <= JPG_APPNF) {

        if (marker != JPG_APPN0)
            dbgln_if(JPG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker);
        return true;
    }
    if (marker >= JPG_RESERVED1 && marker <= JPG_RESERVEDD)
        return true;
    if (marker >= JPG_RST0 && marker <= JPG_RST7)
        return true;
    switch (marker) {
    case JPG_COM:
    case JPG_DHP:
    case JPG_EXP:
    case JPG_DHT:
    case JPG_DQT:
    case JPG_RST:
    case JPG_SOF0:
    case JPG_SOI:
    case JPG_SOS:
        return true;
    }

    if (marker >= 0xFFC0 && marker <= 0xFFCF) {
        if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
            dbgln_if(JPG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf);
            return false;
        }
    }

    return false;
}

static inline ErrorOr<u16> read_be_word(InputMemoryStream& stream)
{
    BigEndian<u16> tmp;
    stream >> tmp;
    TRY(stream.try_handle_any_error());
    return tmp;
}

static inline Marker read_marker_at_cursor(InputMemoryStream& stream)
{
    auto result = read_be_word(stream);
    if (result.is_error())
        return JPG_INVALID;
    u16 marker = result.release_value();
    if (is_valid_marker(marker))
        return marker;
    if (marker != 0xFFFF)
        return JPG_INVALID;
    u8 next;
    do {
        stream >> next;
        if (stream.handle_any_error() || next == 0x00)
            return JPG_INVALID;
    } while (next == 0xFF);
    marker = 0xFF00 | (u16)next;
    return is_valid_marker(marker) ? marker : JPG_INVALID;
}

static ErrorOr<void> read_start_of_scan(InputMemoryStream& stream, JPGLoadingContext& context)
{
    if (context.state < JPGLoadingContext::State::FrameDecoded) {
        dbgln_if(JPG_DEBUG, "{}: SOS found before reading a SOF!", stream.offset());
        return Error::from_string_literal("SOS found before reading a SOF");
    }

    u16 bytes_to_read = TRY(read_be_word(stream)) - 2;
    TRY(ensure_bounds_okay(stream.offset(), bytes_to_read, context.data_size));
    u8 component_count = 0;
    stream >> component_count;
    TRY(stream.try_handle_any_error());
    if (component_count != context.component_count) {
        dbgln_if(JPG_DEBUG, "{}: Unsupported number of components: {}!", stream.offset(), component_count);
        return Error::from_string_literal("Unsupported number of components");
    }

    for (int i = 0; i < component_count; i++) {
        u8 component_id = 0;
        stream >> component_id;
        TRY(stream.try_handle_any_error());

        auto& component = context.components[i];
        if (component.id != component_id) {
            dbgln("JPEG decode failed (component.id != component_id)");
            return Error::from_string_literal("JPEG decode failed (component.id != component_id)");
        }

        u8 table_ids = 0;
        stream >> table_ids;
        TRY(stream.try_handle_any_error());

        component.dc_destination_id = table_ids >> 4;
        component.ac_destination_id = table_ids & 0x0F;

        if (context.dc_tables.size() != context.ac_tables.size()) {
            dbgln_if(JPG_DEBUG, "{}: DC & AC table count mismatch!", stream.offset());
            return Error::from_string_literal("DC & AC table count mismatch");
        }

        if (!context.dc_tables.contains(component.dc_destination_id)) {
            dbgln_if(JPG_DEBUG, "DC table (id: {}) does not exist!", component.dc_destination_id);
            return Error::from_string_literal("DC table does not exist");
        }

        if (!context.ac_tables.contains(component.ac_destination_id)) {
            dbgln_if(JPG_DEBUG, "AC table (id: {}) does not exist!", component.ac_destination_id);
            return Error::from_string_literal("AC table does not exist");
        }
    }

    u8 spectral_selection_start = 0;
    stream >> spectral_selection_start;
    TRY(stream.try_handle_any_error());
    u8 spectral_selection_end = 0;
    stream >> spectral_selection_end;
    TRY(stream.try_handle_any_error());
    u8 successive_approximation = 0;
    stream >> successive_approximation;
    TRY(stream.try_handle_any_error());
    // The three values should be fixed for baseline JPEGs utilizing sequential DCT.
    if (spectral_selection_start != 0 || spectral_selection_end != 63 || successive_approximation != 0) {
        dbgln_if(JPG_DEBUG, "{}: ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation: {}!",
            stream.offset(),
            spectral_selection_start,
            spectral_selection_end,
            successive_approximation);
        return Error::from_string_literal("Spectral selection is not [0,63] or successive approximation is not null");
    }
    return {};
}

static ErrorOr<void> read_reset_marker(InputMemoryStream& stream, JPGLoadingContext& context)
{
    u16 bytes_to_read = TRY(read_be_word(stream)) - 2;
    if (bytes_to_read != 2) {
        dbgln_if(JPG_DEBUG, "{}: Malformed reset marker found!", stream.offset());
        return Error::from_string_literal("Malformed reset marker found");
    }
    context.dc_reset_interval = TRY(read_be_word(stream));
    return {};
}

static ErrorOr<void> read_huffman_table(InputMemoryStream& stream, JPGLoadingContext& context)
{
    i32 bytes_to_read = TRY(read_be_word(stream));
    TRY(ensure_bounds_okay(stream.offset(), bytes_to_read, context.data_size));
    bytes_to_read -= 2;
    while (bytes_to_read > 0) {
        HuffmanTableSpec table;
        u8 table_info = 0;
        stream >> table_info;
        TRY(stream.try_handle_any_error());
        u8 table_type = table_info >> 4;
        u8 table_destination_id = table_info & 0x0F;
        if (table_type > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unrecognized huffman table: {}!", stream.offset(), table_type);
            return Error::from_string_literal("Unrecognized huffman table");
        }
        if (table_destination_id > 1) {
            dbgln_if(JPG_DEBUG, "{}: Invalid huffman table destination id: {}!", stream.offset(), table_destination_id);
            return Error::from_string_literal("Invalid huffman table destination id");
        }

        table.type = table_type;
        table.destination_id = table_destination_id;
        u32 total_codes = 0;

        // Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
        for (int i = 0; i < 16; i++) {
            u8 count = 0;
            stream >> count;
            TRY(stream.try_handle_any_error());
            total_codes += count;
            table.code_counts[i] = count;
        }

        table.codes.ensure_capacity(total_codes);

        // Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
        for (u32 i = 0; i < total_codes; i++) {
            u8 symbol = 0;
            stream >> symbol;
            TRY(stream.try_handle_any_error());
            table.symbols.append(symbol);
        }

        TRY(stream.try_handle_any_error());

        auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables;
        huffman_table.set(table.destination_id, table);
        VERIFY(huffman_table.size() <= 2);

        bytes_to_read -= 1 + 16 + total_codes;
    }

    if (bytes_to_read != 0) {
        dbgln_if(JPG_DEBUG, "{}: Extra bytes detected in huffman header!", stream.offset());
        return Error::from_string_literal("Extra bytes detected in huffman header");
    }
    return {};
}

static inline bool validate_luma_and_modify_context(ComponentSpec const& luma, JPGLoadingContext& context)
{
    if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
        context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
        context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
        context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
        // For easy reference to relevant sample factors.
        context.hsample_factor = luma.hsample_factor;
        context.vsample_factor = luma.vsample_factor;

        if constexpr (JPG_DEBUG) {
            dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor);
            dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor);
        }

        return true;
    }
    return false;
}

static inline void set_macroblock_metadata(JPGLoadingContext& context)
{
    context.mblock_meta.hcount = (context.frame.width + 7) / 8;
    context.mblock_meta.vcount = (context.frame.height + 7) / 8;
    context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
    context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
    context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
}

static ErrorOr<void> read_start_of_frame(InputMemoryStream& stream, JPGLoadingContext& context)
{
    if (context.state == JPGLoadingContext::FrameDecoded) {
        dbgln_if(JPG_DEBUG, "{}: SOF repeated!", stream.offset());
        return Error::from_string_literal("SOF repeated");
    }

    i32 bytes_to_read = TRY(read_be_word(stream));

    bytes_to_read -= 2;
    TRY(ensure_bounds_okay(stream.offset(), bytes_to_read, context.data_size));

    stream >> context.frame.precision;
    TRY(stream.try_handle_any_error());
    if (context.frame.precision != 8) {
        dbgln_if(JPG_DEBUG, "{}: SOF precision != 8!", stream.offset());
        return Error::from_string_literal("SOF precision != 8");
    }

    context.frame.height = TRY(read_be_word(stream));
    context.frame.width = TRY(read_be_word(stream));
    if (!context.frame.width || !context.frame.height) {
        dbgln_if(JPG_DEBUG, "{}: ERROR! Image height: {}, Image width: {}!", stream.offset(), context.frame.height, context.frame.width);
        return Error::from_string_literal("Image frame height of width null");
    }

    if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) {
        dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height);
        return Error::from_string_literal("JPEG too large for comfort");
    }

    set_macroblock_metadata(context);

    stream >> context.component_count;
    TRY(stream.try_handle_any_error());
    if (context.component_count != 1 && context.component_count != 3) {
        dbgln_if(JPG_DEBUG, "{}: Unsupported number of components in SOF: {}!", stream.offset(), context.component_count);
        return Error::from_string_literal("Unsupported number of components in SOF");
    }

    for (u8 i = 0; i < context.component_count; i++) {
        ComponentSpec component;

        stream >> component.id;
        TRY(stream.try_handle_any_error());

        u8 subsample_factors = 0;
        stream >> subsample_factors;
        TRY(stream.try_handle_any_error());
        component.hsample_factor = subsample_factors >> 4;
        component.vsample_factor = subsample_factors & 0x0F;

        if (i == 0) {
            // If there is only a single component, i.e. grayscale, the macroblocks will not be interleaved, even if
            // the horizontal or vertical sample factor is larger than 1.
            if (context.component_count == 1) {
                component.hsample_factor = 1;
                component.vsample_factor = 1;
            }
            // By convention, downsampling is applied only on chroma components. So we should
            //  hope to see the maximum sampling factor in the luma component.
            if (!validate_luma_and_modify_context(component, context)) {
                dbgln_if(JPG_DEBUG, "{}: Unsupported luma subsampling factors: horizontal: {}, vertical: {}",
                    stream.offset(),
                    component.hsample_factor,
                    component.vsample_factor);
                return Error::from_string_literal("Unsupported luma subsampling factors");
            }
        } else {
            if (component.hsample_factor != 1 || component.vsample_factor != 1) {
                dbgln_if(JPG_DEBUG, "{}: Unsupported chroma subsampling factors: horizontal: {}, vertical: {}",
                    stream.offset(),
                    component.hsample_factor,
                    component.vsample_factor);
                return Error::from_string_literal("Unsupported chroma subsampling factors");
            }
        }

        stream >> component.qtable_id;
        TRY(stream.try_handle_any_error());
        if (component.qtable_id > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), component.qtable_id);
            return Error::from_string_literal("Unsupported quantization table id");
        }

        context.components.append(move(component));
    }

    return {};
}

static ErrorOr<void> read_quantization_table(InputMemoryStream& stream, JPGLoadingContext& context)
{
    i32 bytes_to_read = TRY(read_be_word(stream)) - 2;
    TRY(ensure_bounds_okay(stream.offset(), bytes_to_read, context.data_size));
    while (bytes_to_read > 0) {
        u8 info_byte = 0;
        stream >> info_byte;
        TRY(stream.try_handle_any_error());
        u8 element_unit_hint = info_byte >> 4;
        if (element_unit_hint > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unsupported unit hint in quantization table: {}!", stream.offset(), element_unit_hint);
            return Error::from_string_literal("Unsupported unit hint in quantization table");
        }
        u8 table_id = info_byte & 0x0F;
        if (table_id > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), table_id);
            return Error::from_string_literal("Unsupported quantization table id");
        }
        u32* table = table_id == 0 ? context.luma_table : context.chroma_table;
        for (int i = 0; i < 64; i++) {
            if (element_unit_hint == 0) {
                u8 tmp = 0;
                stream >> tmp;
                TRY(stream.try_handle_any_error());
                table[zigzag_map[i]] = tmp;
            } else {
                table[zigzag_map[i]] = TRY(read_be_word(stream));
            }
        }
        TRY(stream.try_handle_any_error());

        bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
    }
    if (bytes_to_read != 0) {
        dbgln_if(JPG_DEBUG, "{}: Invalid length for one or more quantization tables!", stream.offset());
        return Error::from_string_literal("Invalid length for one or more quantization tables");
    }

    return {};
}

static ErrorOr<void> skip_marker_with_length(InputMemoryStream& stream)
{
    u16 bytes_to_skip = TRY(read_be_word(stream)) - 2;
    stream.discard_or_error(bytes_to_skip);
    TRY(stream.try_handle_any_error());
    return {};
}

static void dequantize(JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            for (u32 i = 0; i < context.component_count; i++) {
                auto& component = context.components[i];
                u32 const* table = component.qtable_id == 0 ? context.luma_table : context.chroma_table;
                for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
                    for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
                        u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
                        Macroblock& block = macroblocks[mb_index];
                        int* block_component = get_component(block, i);
                        for (u32 k = 0; k < 64; k++)
                            block_component[k] *= table[k];
                    }
                }
            }
        }
    }
}

static void inverse_dct(JPGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
    static float const m0 = 2.0f * AK::cos(1.0f / 16.0f * 2.0f * AK::Pi<float>);
    static float const m1 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
    static float const m3 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
    static float const m5 = 2.0f * AK::cos(3.0f / 16.0f * 2.0f * AK::Pi<float>);
    static float const m2 = m0 - m5;
    static float const m4 = m0 + m5;
    static float const s0 = AK::cos(0.0f / 16.0f * AK::Pi<float>) * AK::rsqrt(8.0f);
    static float const s1 = AK::cos(1.0f / 16.0f * AK::Pi<float>) / 2.0f;
    static float const s2 = AK::cos(2.0f / 16.0f * AK::Pi<float>) / 2.0f;
    static float const s3 = AK::cos(3.0f / 16.0f * AK::Pi<float>) / 2.0f;
    static float const s4 = AK::cos(4.0f / 16.0f * AK::Pi<float>) / 2.0f;
    static float const s5 = AK::cos(5.0f / 16.0f * AK::Pi<float>) / 2.0f;
    static float const s6 = AK::cos(6.0f / 16.0f * AK::Pi<float>) / 2.0f;
    static float const s7 = AK::cos(7.0f / 16.0f * AK::Pi<float>) / 2.0f;

    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            for (u32 component_i = 0; component_i < context.component_count; component_i++) {
                auto& component = context.components[component_i];
                for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
                    for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
                        u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
                        Macroblock& block = macroblocks[mb_index];
                        i32* block_component = get_component(block, component_i);
                        for (u32 k = 0; k < 8; ++k) {
                            float const g0 = block_component[0 * 8 + k] * s0;
                            float const g1 = block_component[4 * 8 + k] * s4;
                            float const g2 = block_component[2 * 8 + k] * s2;
                            float const g3 = block_component[6 * 8 + k] * s6;
                            float const g4 = block_component[5 * 8 + k] * s5;
                            float const g5 = block_component[1 * 8 + k] * s1;
                            float const g6 = block_component[7 * 8 + k] * s7;
                            float const g7 = block_component[3 * 8 + k] * s3;

                            float const f0 = g0;
                            float const f1 = g1;
                            float const f2 = g2;
                            float const f3 = g3;
                            float const f4 = g4 - g7;
                            float const f5 = g5 + g6;
                            float const f6 = g5 - g6;
                            float const f7 = g4 + g7;

                            float const e0 = f0;
                            float const e1 = f1;
                            float const e2 = f2 - f3;
                            float const e3 = f2 + f3;
                            float const e4 = f4;
                            float const e5 = f5 - f7;
                            float const e6 = f6;
                            float const e7 = f5 + f7;
                            float const e8 = f4 + f6;

                            float const d0 = e0;
                            float const d1 = e1;
                            float const d2 = e2 * m1;
                            float const d3 = e3;
                            float const d4 = e4 * m2;
                            float const d5 = e5 * m3;
                            float const d6 = e6 * m4;
                            float const d7 = e7;
                            float const d8 = e8 * m5;

                            float const c0 = d0 + d1;
                            float const c1 = d0 - d1;
                            float const c2 = d2 - d3;
                            float const c3 = d3;
                            float const c4 = d4 + d8;
                            float const c5 = d5 + d7;
                            float const c6 = d6 - d8;
                            float const c7 = d7;
                            float const c8 = c5 - c6;

                            float const b0 = c0 + c3;
                            float const b1 = c1 + c2;
                            float const b2 = c1 - c2;
                            float const b3 = c0 - c3;
                            float const b4 = c4 - c8;
                            float const b5 = c8;
                            float const b6 = c6 - c7;
                            float const b7 = c7;

                            block_component[0 * 8 + k] = b0 + b7;
                            block_component[1 * 8 + k] = b1 + b6;
                            block_component[2 * 8 + k] = b2 + b5;
                            block_component[3 * 8 + k] = b3 + b4;
                            block_component[4 * 8 + k] = b3 - b4;
                            block_component[5 * 8 + k] = b2 - b5;
                            block_component[6 * 8 + k] = b1 - b6;
                            block_component[7 * 8 + k] = b0 - b7;
                        }
                        for (u32 l = 0; l < 8; ++l) {
                            float const g0 = block_component[l * 8 + 0] * s0;
                            float const g1 = block_component[l * 8 + 4] * s4;
                            float const g2 = block_component[l * 8 + 2] * s2;
                            float const g3 = block_component[l * 8 + 6] * s6;
                            float const g4 = block_component[l * 8 + 5] * s5;
                            float const g5 = block_component[l * 8 + 1] * s1;
                            float const g6 = block_component[l * 8 + 7] * s7;
                            float const g7 = block_component[l * 8 + 3] * s3;

                            float const f0 = g0;
                            float const f1 = g1;
                            float const f2 = g2;
                            float const f3 = g3;
                            float const f4 = g4 - g7;
                            float const f5 = g5 + g6;
                            float const f6 = g5 - g6;
                            float const f7 = g4 + g7;

                            float const e0 = f0;
                            float const e1 = f1;
                            float const e2 = f2 - f3;
                            float const e3 = f2 + f3;
                            float const e4 = f4;
                            float const e5 = f5 - f7;
                            float const e6 = f6;
                            float const e7 = f5 + f7;
                            float const e8 = f4 + f6;

                            float const d0 = e0;
                            float const d1 = e1;
                            float const d2 = e2 * m1;
                            float const d3 = e3;
                            float const d4 = e4 * m2;
                            float const d5 = e5 * m3;
                            float const d6 = e6 * m4;
                            float const d7 = e7;
                            float const d8 = e8 * m5;

                            float const c0 = d0 + d1;
                            float const c1 = d0 - d1;
                            float const c2 = d2 - d3;
                            float const c3 = d3;
                            float const c4 = d4 + d8;
                            float const c5 = d5 + d7;
                            float const c6 = d6 - d8;
                            float const c7 = d7;
                            float const c8 = c5 - c6;

                            float const b0 = c0 + c3;
                            float const b1 = c1 + c2;
                            float const b2 = c1 - c2;
                            float const b3 = c0 - c3;
                            float const b4 = c4 - c8;
                            float const b5 = c8;
                            float const b6 = c6 - c7;
                            float const b7 = c7;

                            block_component[l * 8 + 0] = b0 + b7;
                            block_component[l * 8 + 1] = b1 + b6;
                            block_component[l * 8 + 2] = b2 + b5;
                            block_component[l * 8 + 3] = b3 + b4;
                            block_component[l * 8 + 4] = b3 - b4;
                            block_component[l * 8 + 5] = b2 - b5;
                            block_component[l * 8 + 6] = b1 - b6;
                            block_component[l * 8 + 7] = b0 - b7;
                        }
                    }
                }
            }
        }
    }
}

static void ycbcr_to_rgb(JPGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
            Macroblock const& chroma = macroblocks[chroma_block_index];
            // Overflows are intentional.
            for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
                for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
                    u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
                    i32* y = macroblocks[mb_index].y;
                    i32* cb = macroblocks[mb_index].cb;
                    i32* cr = macroblocks[mb_index].cr;
                    for (u8 i = 7; i < 8; --i) {
                        for (u8 j = 7; j < 8; --j) {
                            const u8 pixel = i * 8 + j;
                            const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
                            const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
                            const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
                            int r = y[pixel] + 1.402f * chroma.cr[chroma_pixel] + 128;
                            int g = y[pixel] - 0.344f * chroma.cb[chroma_pixel] - 0.714f * chroma.cr[chroma_pixel] + 128;
                            int b = y[pixel] + 1.772f * chroma.cb[chroma_pixel] + 128;
                            y[pixel] = r < 0 ? 0 : (r > 255 ? 255 : r);
                            cb[pixel] = g < 0 ? 0 : (g > 255 ? 255 : g);
                            cr[pixel] = b < 0 ? 0 : (b > 255 ? 255 : b);
                        }
                    }
                }
            }
        }
    }
}

static ErrorOr<void> compose_bitmap(JPGLoadingContext& context, Vector<Macroblock> const& macroblocks)
{
    context.bitmap = TRY(Bitmap::try_create(BitmapFormat::BGRx8888, { context.frame.width, context.frame.height }));

    for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
        const u32 block_row = y / 8;
        const u32 pixel_row = y % 8;
        for (u32 x = 0; x < context.frame.width; x++) {
            const u32 block_column = x / 8;
            auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
            const u32 pixel_column = x % 8;
            const u32 pixel_index = pixel_row * 8 + pixel_column;
            const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
            context.bitmap->set_pixel(x, y, color);
        }
    }

    return {};
}

static ErrorOr<void> parse_header(InputMemoryStream& stream, JPGLoadingContext& context)
{
    auto marker = read_marker_at_cursor(stream);
    TRY(stream.try_handle_any_error());
    if (marker != JPG_SOI) {
        dbgln_if(JPG_DEBUG, "{}: SOI not found: {:x}!", stream.offset(), marker);
        return Error::from_string_literal("SOI not found");
    }
    for (;;) {
        marker = read_marker_at_cursor(stream);
        TRY(stream.try_handle_any_error());

        // Set frame type if the marker marks a new frame.
        if (marker >= 0xFFC0 && marker <= 0xFFCF) {
            // Ignore interleaved markers.
            if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
                context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
            }
        }

        switch (marker) {
        case JPG_INVALID:
        case JPG_RST0:
        case JPG_RST1:
        case JPG_RST2:
        case JPG_RST3:
        case JPG_RST4:
        case JPG_RST5:
        case JPG_RST6:
        case JPG_RST7:
        case JPG_SOI:
        case JPG_EOI:
            dbgln_if(JPG_DEBUG, "{}: Unexpected marker {:x}!", stream.offset(), marker);
            return Error::from_string_literal("Unexpected marker");
        case JPG_SOF0:
            TRY(read_start_of_frame(stream, context));
            context.state = JPGLoadingContext::FrameDecoded;
            break;
        case JPG_DQT:
            TRY(read_quantization_table(stream, context));
            break;
        case JPG_RST:
            TRY(read_reset_marker(stream, context));
            break;
        case JPG_DHT:
            TRY(read_huffman_table(stream, context));
            break;
        case JPG_SOS:
            return read_start_of_scan(stream, context);
        default:
            if (auto result = skip_marker_with_length(stream); result.is_error()) {
                dbgln_if(JPG_DEBUG, "{}: Error skipping marker: {:x}!", stream.offset(), marker);
                return result.release_error();
            }
            break;
        }
    }

    VERIFY_NOT_REACHED();
}

static ErrorOr<void> scan_huffman_stream(InputMemoryStream& stream, JPGLoadingContext& context)
{
    u8 last_byte;
    u8 current_byte = 0;
    stream >> current_byte;
    TRY(stream.try_handle_any_error());

    for (;;) {
        last_byte = current_byte;
        stream >> current_byte;
        if (stream.handle_any_error()) {
            dbgln_if(JPG_DEBUG, "{}: EOI not found!", stream.offset());
            return Error::from_string_literal("EOI not found");
        }

        if (last_byte == 0xFF) {
            if (current_byte == 0xFF)
                continue;
            if (current_byte == 0x00) {
                stream >> current_byte;
                TRY(stream.try_handle_any_error());
                context.huffman_stream.stream.append(last_byte);
                continue;
            }
            Marker marker = 0xFF00 | current_byte;
            if (marker == JPG_EOI)
                return {};
            if (marker >= JPG_RST0 && marker <= JPG_RST7) {
                context.huffman_stream.stream.append(marker);
                stream >> current_byte;
                TRY(stream.try_handle_any_error());
                continue;
            }
            dbgln_if(JPG_DEBUG, "{}: Invalid marker: {:x}!", stream.offset(), marker);
            return Error::from_string_literal("Invalid marker");
        } else {
            context.huffman_stream.stream.append(last_byte);
        }
    }

    VERIFY_NOT_REACHED();
}

static ErrorOr<void> decode_jpg(JPGLoadingContext& context)
{
    InputMemoryStream stream { { context.data, context.data_size } };

    TRY(parse_header(stream, context));
    TRY(scan_huffman_stream(stream, context));
    auto macroblocks = TRY(decode_huffman_stream(context));
    dequantize(context, macroblocks);
    inverse_dct(context, macroblocks);
    ycbcr_to_rgb(context, macroblocks);
    TRY(compose_bitmap(context, macroblocks));
    return {};
}

JPGImageDecoderPlugin::JPGImageDecoderPlugin(u8 const* data, size_t size)
{
    m_context = make<JPGLoadingContext>();
    m_context->data = data;
    m_context->data_size = size;
    m_context->huffman_stream.stream.ensure_capacity(50 * KiB);
}

JPGImageDecoderPlugin::~JPGImageDecoderPlugin() = default;

IntSize JPGImageDecoderPlugin::size()
{
    if (m_context->state == JPGLoadingContext::State::Error)
        return {};
    if (m_context->state >= JPGLoadingContext::State::FrameDecoded)
        return { m_context->frame.width, m_context->frame.height };

    return {};
}

void JPGImageDecoderPlugin::set_volatile()
{
    if (m_context->bitmap)
        m_context->bitmap->set_volatile();
}

bool JPGImageDecoderPlugin::set_nonvolatile(bool& was_purged)
{
    if (!m_context->bitmap)
        return false;
    return m_context->bitmap->set_nonvolatile(was_purged);
}

bool JPGImageDecoderPlugin::sniff()
{
    return m_context->data_size > 3
        && m_context->data[0] == 0xFF
        && m_context->data[1] == 0xD8
        && m_context->data[2] == 0xFF;
}

bool JPGImageDecoderPlugin::is_animated()
{
    return false;
}

size_t JPGImageDecoderPlugin::loop_count()
{
    return 0;
}

size_t JPGImageDecoderPlugin::frame_count()
{
    return 1;
}

ErrorOr<ImageFrameDescriptor> JPGImageDecoderPlugin::frame(size_t index)
{
    if (index > 0)
        return Error::from_string_literal("JPGImageDecoderPlugin: Invalid frame index");

    if (m_context->state == JPGLoadingContext::State::Error)
        return Error::from_string_literal("JPGImageDecoderPlugin: Decoding failed");

    if (m_context->state < JPGLoadingContext::State::BitmapDecoded) {
        if (auto result = decode_jpg(*m_context); result.is_error()) {
            m_context->state = JPGLoadingContext::State::Error;
            return result.release_error();
        }
        m_context->state = JPGLoadingContext::State::BitmapDecoded;
    }

    return ImageFrameDescriptor { m_context->bitmap, 0 };
}

}