summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/JPGLoader.cpp
blob: 4b4b4be311357485c83980e4a641e6540a2700cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
/*
 * Copyright (c) 2020, The SerenityOS developers.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/Bitmap.h>
#include <AK/ByteBuffer.h>
#include <AK/Debug.h>
#include <AK/HashMap.h>
#include <AK/LexicalPath.h>
#include <AK/MappedFile.h>
#include <AK/MemoryStream.h>
#include <AK/String.h>
#include <AK/Vector.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/JPGLoader.h>
#include <math.h>

#define JPG_INVALID 0X0000

#define JPG_APPN0 0XFFE0
#define JPG_APPN1 0XFFE1
#define JPG_APPN2 0XFFE2
#define JPG_APPN3 0XFFE3
#define JPG_APPN4 0XFFE4
#define JPG_APPN5 0XFFE5
#define JPG_APPN6 0XFFE6
#define JPG_APPN7 0XFFE7
#define JPG_APPN8 0XFFE8
#define JPG_APPN9 0XFFE9
#define JPG_APPNA 0XFFEA
#define JPG_APPNB 0XFFEB
#define JPG_APPNC 0XFFEC
#define JPG_APPND 0XFFED
#define JPG_APPNE 0xFFEE
#define JPG_APPNF 0xFFEF

#define JPG_RESERVED1 0xFFF1
#define JPG_RESERVED2 0xFFF2
#define JPG_RESERVED3 0xFFF3
#define JPG_RESERVED4 0xFFF4
#define JPG_RESERVED5 0xFFF5
#define JPG_RESERVED6 0xFFF6
#define JPG_RESERVED7 0xFFF7
#define JPG_RESERVED8 0xFFF8
#define JPG_RESERVED9 0xFFF9
#define JPG_RESERVEDA 0xFFFA
#define JPG_RESERVEDB 0xFFFB
#define JPG_RESERVEDC 0xFFFC
#define JPG_RESERVEDD 0xFFFD

#define JPG_RST0 0xFFD0
#define JPG_RST1 0xFFD1
#define JPG_RST2 0xFFD2
#define JPG_RST3 0xFFD3
#define JPG_RST4 0xFFD4
#define JPG_RST5 0xFFD5
#define JPG_RST6 0xFFD6
#define JPG_RST7 0xFFD7

#define JPG_DHP 0xFFDE
#define JPG_EXP 0xFFDF

#define JPG_DHT 0XFFC4
#define JPG_DQT 0XFFDB
#define JPG_EOI 0xFFD9
#define JPG_RST 0XFFDD
#define JPG_SOF0 0XFFC0
#define JPG_SOF2 0xFFC2
#define JPG_SOI 0XFFD8
#define JPG_SOS 0XFFDA
#define JPG_COM 0xFFFE

namespace Gfx {

constexpr static u8 zigzag_map[64] {
    0, 1, 8, 16, 9, 2, 3, 10,
    17, 24, 32, 25, 18, 11, 4, 5,
    12, 19, 26, 33, 40, 48, 41, 34,
    27, 20, 13, 6, 7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36,
    29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46,
    53, 60, 61, 54, 47, 55, 62, 63
};

using Marker = u16;

/**
 * MCU means group of data units that are coded together. A data unit is an 8x8
 * block of component data. In interleaved scans, number of non-interleaved data
 * units of a component C is Ch * Cv, where Ch and Cv represent the horizontal &
 * vertical subsampling factors of the component, respectively. A MacroBlock is
 * an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when
 * we're done decoding the huffman stream.
 */
struct Macroblock {
    union {
        i32 y[64] = { 0 };
        i32 r[64];
    };

    union {
        i32 cb[64] = { 0 };
        i32 g[64];
    };

    union {
        i32 cr[64] = { 0 };
        i32 b[64];
    };
};

struct MacroblockMeta {
    u32 total { 0 };
    u32 padded_total { 0 };
    u32 hcount { 0 };
    u32 vcount { 0 };
    u32 hpadded_count { 0 };
    u32 vpadded_count { 0 };
};

struct ComponentSpec {
    u8 serial_id { 255 }; // In the interval [0, 3).
    u8 id { 0 };
    u8 hsample_factor { 1 }; // Horizontal sampling factor.
    u8 vsample_factor { 1 }; // Vertical sampling factor.
    u8 ac_destination_id { 0 };
    u8 dc_destination_id { 0 };
    u8 qtable_id { 0 }; // Quantization table id.
};

struct StartOfFrame {

    // Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
    enum class FrameType {
        Baseline_DCT = 0,
        Extended_Sequential_DCT = 1,
        Progressive_DCT = 2,
        Sequential_Lossless = 3,
        Differential_Sequential_DCT = 5,
        Differential_Progressive_DCT = 6,
        Differential_Sequential_Lossless = 7,
        Extended_Sequential_DCT_Arithmetic = 9,
        Progressive_DCT_Arithmetic = 10,
        Sequential_Lossless_Arithmetic = 11,
        Differential_Sequential_DCT_Arithmetic = 13,
        Differential_Progressive_DCT_Arithmetic = 14,
        Differential_Sequential_Lossless_Arithmetic = 15,
    };

    FrameType type { FrameType::Baseline_DCT };
    u8 precision { 0 };
    u16 height { 0 };
    u16 width { 0 };
};

struct HuffmanTableSpec {
    u8 type { 0 };
    u8 destination_id { 0 };
    u8 code_counts[16] = { 0 };
    Vector<u8> symbols;
    Vector<u16> codes;
};

struct HuffmanStreamState {
    Vector<u8> stream;
    u8 bit_offset { 0 };
    size_t byte_offset { 0 };
};

struct JPGLoadingContext {
    enum State {
        NotDecoded = 0,
        Error,
        FrameDecoded,
        BitmapDecoded
    };

    State state { State::NotDecoded };
    const u8* data { nullptr };
    size_t data_size { 0 };
    u32 luma_table[64] = { 0 };
    u32 chroma_table[64] = { 0 };
    StartOfFrame frame;
    u8 hsample_factor { 0 };
    u8 vsample_factor { 0 };
    u8 component_count { 0 };
    HashMap<u8, ComponentSpec> components;
    RefPtr<Gfx::Bitmap> bitmap;
    u16 dc_reset_interval { 0 };
    HashMap<u8, HuffmanTableSpec> dc_tables;
    HashMap<u8, HuffmanTableSpec> ac_tables;
    HuffmanStreamState huffman_stream;
    i32 previous_dc_values[3] = { 0 };
    MacroblockMeta mblock_meta;
};

static void generate_huffman_codes(HuffmanTableSpec& table)
{
    unsigned code = 0;
    for (auto number_of_codes : table.code_counts) {
        for (int i = 0; i < number_of_codes; i++)
            table.codes.append(code++);
        code <<= 1;
    }
}

static Optional<size_t> read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1)
{
    if (count > (8 * sizeof(size_t))) {
        dbgln_if(JPG_DEBUG, "Can't read {} bits at once!", count);
        return {};
    }
    size_t value = 0;
    while (count--) {
        if (hstream.byte_offset >= hstream.stream.size()) {
            dbgln_if(JPG_DEBUG, "Huffman stream exhausted. This could be an error!");
            return {};
        }
        u8 current_byte = hstream.stream[hstream.byte_offset];
        u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first.
        hstream.bit_offset++;
        value = (value << 1) | (size_t)current_bit;
        if (hstream.bit_offset == 8) {
            hstream.byte_offset++;
            hstream.bit_offset = 0;
        }
    }
    return value;
}

static Optional<u8> get_next_symbol(HuffmanStreamState& hstream, const HuffmanTableSpec& table)
{
    unsigned code = 0;
    size_t code_cursor = 0;
    for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits.
        auto result = read_huffman_bits(hstream);
        if (!result.has_value())
            return {};
        code = (code << 1) | (i32)result.release_value();
        for (int j = 0; j < table.code_counts[i]; j++) {
            if (code == table.codes[code_cursor])
                return table.symbols[code_cursor];
            code_cursor++;
        }
    }

#if JPG_DEBUG
    dbgln("If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!");
#endif
    return {};
}

/**
 * Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
 * Depending on the sampling factors, we may not see triples of y, cb, cr in that
 * order. If sample factors differ from one, we'll read more than one block of y-
 * coefficients before we get to read a cb-cr block.

 * In the function below, `hcursor` and `vcursor` denote the location of the block
 * we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
 * that iterate over the vertical and horizontal subsampling factors, respectively.
 * When we finish one iteration of the innermost loop, we'll have the coefficients
 * of one of the components of block at position `mb_index`. When the outermost loop
 * finishes first iteration, we'll have all the luminance coefficients for all the
 * macroblocks that share the chrominance data. Next two iterations (assuming that
 * we are dealing with three components) will fill up the blocks with chroma data.
 */
static bool build_macroblocks(JPGLoadingContext& context, Vector<Macroblock>& macroblocks, u8 hcursor, u8 vcursor)
{
    for (auto it = context.components.begin(); it != context.components.end(); ++it) {
        ComponentSpec& component = it->value;

        if (component.dc_destination_id >= context.dc_tables.size())
            return false;
        if (component.ac_destination_id >= context.ac_tables.size())
            return false;

        for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
            for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
                u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
                Macroblock& block = macroblocks[mb_index];

                auto& dc_table = context.dc_tables.find(component.dc_destination_id)->value;
                auto& ac_table = context.ac_tables.find(component.ac_destination_id)->value;

                auto symbol_or_error = get_next_symbol(context.huffman_stream, dc_table);
                if (!symbol_or_error.has_value())
                    return false;

                // For DC coefficients, symbol encodes the length of the coefficient.
                auto dc_length = symbol_or_error.release_value();
                if (dc_length > 11) {
                    dbgln_if(JPG_DEBUG, "DC coefficient too long: {}!", dc_length);
                    return false;
                }

                auto coeff_or_error = read_huffman_bits(context.huffman_stream, dc_length);
                if (!coeff_or_error.has_value())
                    return false;

                // DC coefficients are encoded as the difference between previous and current DC values.
                i32 dc_diff = coeff_or_error.release_value();

                // If MSB in diff is 0, the difference is -ve. Otherwise +ve.
                if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
                    dc_diff -= (1 << dc_length) - 1;

                i32* select_component = component.serial_id == 0 ? block.y : (component.serial_id == 1 ? block.cb : block.cr);
                auto& previous_dc = context.previous_dc_values[component.serial_id];
                select_component[0] = previous_dc += dc_diff;

                // Compute the AC coefficients.
                for (int j = 1; j < 64;) {
                    symbol_or_error = get_next_symbol(context.huffman_stream, ac_table);
                    if (!symbol_or_error.has_value())
                        return false;

                    // AC symbols encode 2 pieces of information, the high 4 bits represent
                    // number of zeroes to be stuffed before reading the coefficient. Low 4
                    // bits represent the magnitude of the coefficient.
                    auto ac_symbol = symbol_or_error.release_value();
                    if (ac_symbol == 0)
                        break;

                    // ac_symbol = 0xF0 means we need to skip 16 zeroes.
                    u8 run_length = ac_symbol == 0xF0 ? 16 : ac_symbol >> 4;
                    j += run_length;

                    if (j >= 64) {
                        dbgln_if(JPG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", j, run_length);
                        return false;
                    }

                    u8 coeff_length = ac_symbol & 0x0F;
                    if (coeff_length > 10) {
                        dbgln_if(JPG_DEBUG, "AC coefficient too long: {}!", coeff_length);
                        return false;
                    }

                    if (coeff_length != 0) {
                        coeff_or_error = read_huffman_bits(context.huffman_stream, coeff_length);
                        if (!coeff_or_error.has_value())
                            return false;
                        i32 ac_coefficient = coeff_or_error.release_value();
                        if (ac_coefficient < (1 << (coeff_length - 1)))
                            ac_coefficient -= (1 << coeff_length) - 1;

                        select_component[zigzag_map[j++]] = ac_coefficient;
                    }
                }
            }
        }
    }

    return true;
}

static Optional<Vector<Macroblock>> decode_huffman_stream(JPGLoadingContext& context)
{
    Vector<Macroblock> macroblocks;
    macroblocks.resize(context.mblock_meta.padded_total);

    if constexpr (JPG_DEBUG) {
        dbgln("Image width: {}", context.frame.width);
        dbgln("Image height: {}", context.frame.height);
        dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count);
        dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count);
        dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total);
    }

    // Compute huffman codes for DC and AC tables.
    for (auto it = context.dc_tables.begin(); it != context.dc_tables.end(); ++it)
        generate_huffman_codes(it->value);

    for (auto it = context.ac_tables.begin(); it != context.ac_tables.end(); ++it)
        generate_huffman_codes(it->value);

    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
            if (context.dc_reset_interval > 0) {
                if (i % context.dc_reset_interval == 0) {
                    context.previous_dc_values[0] = 0;
                    context.previous_dc_values[1] = 0;
                    context.previous_dc_values[2] = 0;

                    // Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
                    //  the 0th bit of the next byte.
                    if (context.huffman_stream.byte_offset < context.huffman_stream.stream.size()) {
                        if (context.huffman_stream.bit_offset > 0) {
                            context.huffman_stream.bit_offset = 0;
                            context.huffman_stream.byte_offset++;
                        }

                        // Skip the restart marker (RSTn).
                        context.huffman_stream.byte_offset++;
                    }
                }
            }

            if (!build_macroblocks(context, macroblocks, hcursor, vcursor)) {
                if constexpr (JPG_DEBUG) {
                    dbgln("Failed to build Macroblock {}", i);
                    dbgln("Huffman stream byte offset {}", context.huffman_stream.byte_offset);
                    dbgln("Huffman stream bit offset {}", context.huffman_stream.bit_offset);
                }
                return {};
            }
        }
    }

    return macroblocks;
}

static inline bool bounds_okay(const size_t cursor, const size_t delta, const size_t bound)
{
    return (delta + cursor) < bound;
}

static inline bool is_valid_marker(const Marker marker)
{
    if (marker >= JPG_APPN0 && marker <= JPG_APPNF) {

        if (marker != JPG_APPN0)
            dbgln_if(JPG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker);
        return true;
    }
    if (marker >= JPG_RESERVED1 && marker <= JPG_RESERVEDD)
        return true;
    if (marker >= JPG_RST0 && marker <= JPG_RST7)
        return true;
    switch (marker) {
    case JPG_COM:
    case JPG_DHP:
    case JPG_EXP:
    case JPG_DHT:
    case JPG_DQT:
    case JPG_RST:
    case JPG_SOF0:
    case JPG_SOI:
    case JPG_SOS:
        return true;
    }

    if (marker >= 0xFFC0 && marker <= 0xFFCF) {
        if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
            dbgln_if(JPG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf);
            return false;
        }
    }

    return false;
}

static inline u16 read_be_word(InputMemoryStream& stream)
{
    BigEndian<u16> tmp;
    stream >> tmp;
    return tmp;
}

static inline Marker read_marker_at_cursor(InputMemoryStream& stream)
{
    u16 marker = read_be_word(stream);
    if (stream.handle_any_error())
        return JPG_INVALID;
    if (is_valid_marker(marker))
        return marker;
    if (marker != 0xFFFF)
        return JPG_INVALID;
    u8 next;
    do {
        stream >> next;
        if (stream.handle_any_error() || next == 0x00)
            return JPG_INVALID;
    } while (next == 0xFF);
    marker = 0xFF00 | (u16)next;
    return is_valid_marker(marker) ? marker : JPG_INVALID;
}

static bool read_start_of_scan(InputMemoryStream& stream, JPGLoadingContext& context)
{
    if (context.state < JPGLoadingContext::State::FrameDecoded) {
        dbgln_if(JPG_DEBUG, "{}: SOS found before reading a SOF!", stream.offset());
        return false;
    }

    u16 bytes_to_read = read_be_word(stream);
    if (stream.handle_any_error())
        return false;
    bytes_to_read -= 2;
    if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
        return false;
    u8 component_count = 0;
    stream >> component_count;
    if (stream.handle_any_error())
        return false;
    if (component_count != context.component_count) {
        dbgln_if(JPG_DEBUG, "{}: Unsupported number of components: {}!", stream.offset(), component_count);
        return false;
    }

    for (int i = 0; i < component_count; i++) {
        ComponentSpec* component = nullptr;
        u8 component_id = 0;
        stream >> component_id;
        if (stream.handle_any_error())
            return false;

        auto it = context.components.find(component_id);
        if (it != context.components.end()) {
            component = &it->value;
            if (i != component->serial_id) {
                dbgln("JPEG decode failed (i != component->serial_id)");
                return false;
            }
        } else {
            dbgln_if(JPG_DEBUG, "{}: Unsupported component id: {}!", stream.offset(), component_id);
            return false;
        }

        u8 table_ids = 0;
        stream >> table_ids;
        if (stream.handle_any_error())
            return false;

        component->dc_destination_id = table_ids >> 4;
        component->ac_destination_id = table_ids & 0x0F;

        if (context.dc_tables.size() != context.ac_tables.size()) {
            dbgln_if(JPG_DEBUG, "{}: DC & AC table count mismatch!", stream.offset());
            return false;
        }

        if (!context.dc_tables.contains(component->dc_destination_id)) {
            dbgln_if(JPG_DEBUG, "DC table (id: {}) does not exist!", component->dc_destination_id);
            return false;
        }

        if (!context.ac_tables.contains(component->ac_destination_id)) {
            dbgln_if(JPG_DEBUG, "AC table (id: {}) does not exist!", component->ac_destination_id);
            return false;
        }
    }

    u8 spectral_selection_start = 0;
    stream >> spectral_selection_start;
    if (stream.handle_any_error())
        return false;
    u8 spectral_selection_end = 0;
    stream >> spectral_selection_end;
    if (stream.handle_any_error())
        return false;
    u8 successive_approximation = 0;
    stream >> successive_approximation;
    if (stream.handle_any_error())
        return false;
    // The three values should be fixed for baseline JPEGs utilizing sequential DCT.
    if (spectral_selection_start != 0 || spectral_selection_end != 63 || successive_approximation != 0) {
        dbgln_if(JPG_DEBUG, "{}: ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation: {}!",
            stream.offset(),
            spectral_selection_start,
            spectral_selection_end,
            successive_approximation);
        return false;
    }
    return true;
}

static bool read_reset_marker(InputMemoryStream& stream, JPGLoadingContext& context)
{
    u16 bytes_to_read = read_be_word(stream);
    if (stream.handle_any_error())
        return false;
    bytes_to_read -= 2;
    if (bytes_to_read != 2) {
        dbgln_if(JPG_DEBUG, "{}: Malformed reset marker found!", stream.offset());
        return false;
    }
    context.dc_reset_interval = read_be_word(stream);
    if (stream.handle_any_error())
        return false;
    return true;
}

static bool read_huffman_table(InputMemoryStream& stream, JPGLoadingContext& context)
{
    i32 bytes_to_read = read_be_word(stream);
    if (stream.handle_any_error())
        return false;
    if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
        return false;
    bytes_to_read -= 2;
    while (bytes_to_read > 0) {
        HuffmanTableSpec table;
        u8 table_info = 0;
        stream >> table_info;
        if (stream.handle_any_error())
            return false;
        u8 table_type = table_info >> 4;
        u8 table_destination_id = table_info & 0x0F;
        if (table_type > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unrecognized huffman table: {}!", stream.offset(), table_type);
            return false;
        }
        if (table_destination_id > 1) {
            dbgln_if(JPG_DEBUG, "{}: Invalid huffman table destination id: {}!", stream.offset(), table_destination_id);
            return false;
        }

        table.type = table_type;
        table.destination_id = table_destination_id;
        u32 total_codes = 0;

        // Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
        for (int i = 0; i < 16; i++) {
            u8 count = 0;
            stream >> count;
            if (stream.handle_any_error())
                return false;
            total_codes += count;
            table.code_counts[i] = count;
        }

        table.codes.ensure_capacity(total_codes);

        // Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
        for (u32 i = 0; i < total_codes; i++) {
            u8 symbol = 0;
            stream >> symbol;
            if (stream.handle_any_error())
                return false;
            table.symbols.append(symbol);
        }

        if (stream.handle_any_error())
            return false;

        auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables;
        huffman_table.set(table.destination_id, table);
        ASSERT(huffman_table.size() <= 2);

        bytes_to_read -= 1 + 16 + total_codes;
    }

    if (bytes_to_read != 0) {
        dbgln_if(JPG_DEBUG, "{}: Extra bytes detected in huffman header!", stream.offset());
        return false;
    }
    return true;
}

static inline bool validate_luma_and_modify_context(const ComponentSpec& luma, JPGLoadingContext& context)
{
    if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
        context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
        context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
        context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
        // For easy reference to relevant sample factors.
        context.hsample_factor = luma.hsample_factor;
        context.vsample_factor = luma.vsample_factor;

        if constexpr (JPG_DEBUG) {
            dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor);
            dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor);
        }

        return true;
    }
    return false;
}

static inline void set_macroblock_metadata(JPGLoadingContext& context)
{
    context.mblock_meta.hcount = (context.frame.width + 7) / 8;
    context.mblock_meta.vcount = (context.frame.height + 7) / 8;
    context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
    context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
    context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
}

static bool read_start_of_frame(InputMemoryStream& stream, JPGLoadingContext& context)
{
    if (context.state == JPGLoadingContext::FrameDecoded) {
        dbgln_if(JPG_DEBUG, "{}: SOF repeated!", stream.offset());
        return false;
    }

    i32 bytes_to_read = read_be_word(stream);
    if (stream.handle_any_error())
        return false;

    bytes_to_read -= 2;
    if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
        return false;

    stream >> context.frame.precision;
    if (stream.handle_any_error())
        return false;
    if (context.frame.precision != 8) {
        dbgln_if(JPG_DEBUG, "{}: SOF precision != 8!", stream.offset());
        return false;
    }

    context.frame.height = read_be_word(stream);
    if (stream.handle_any_error())
        return false;
    context.frame.width = read_be_word(stream);
    if (stream.handle_any_error())
        return false;
    if (!context.frame.width || !context.frame.height) {
        dbgln_if(JPG_DEBUG, "{}: ERROR! Image height: {}, Image width: {}!", stream.offset(), context.frame.height, context.frame.width);
        return false;
    }

    if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) {
        dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height);
        return false;
    }

    set_macroblock_metadata(context);

    stream >> context.component_count;
    if (stream.handle_any_error())
        return false;
    if (context.component_count != 1 && context.component_count != 3) {
        dbgln_if(JPG_DEBUG, "{}: Unsupported number of components in SOF: {}!", stream.offset(), context.component_count);
        return false;
    }

    for (u8 i = 0; i < context.component_count; i++) {
        ComponentSpec component;
        component.serial_id = i;

        stream >> component.id;
        if (stream.handle_any_error())
            return false;

        u8 subsample_factors = 0;
        stream >> subsample_factors;
        if (stream.handle_any_error())
            return false;
        component.hsample_factor = subsample_factors >> 4;
        component.vsample_factor = subsample_factors & 0x0F;

        if (component.serial_id == 0) {
            // By convention, downsampling is applied only on chroma components. So we should
            //  hope to see the maximum sampling factor in the luma component.
            if (!validate_luma_and_modify_context(component, context)) {
                dbgln_if(JPG_DEBUG, "{}: Unsupported luma subsampling factors: horizontal: {}, vertical: {}",
                    stream.offset(),
                    component.hsample_factor,
                    component.vsample_factor);
                return false;
            }
        } else {
            if (component.hsample_factor != 1 || component.vsample_factor != 1) {
                dbgln_if(JPG_DEBUG, "{}: Unsupported chroma subsampling factors: horizontal: {}, vertical: {}",
                    stream.offset(),
                    component.hsample_factor,
                    component.vsample_factor);
                return false;
            }
        }

        stream >> component.qtable_id;
        if (stream.handle_any_error())
            return false;
        if (component.qtable_id > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), component.qtable_id);
            return false;
        }

        context.components.set(component.id, component);
    }

    return true;
}

static bool read_quantization_table(InputMemoryStream& stream, JPGLoadingContext& context)
{
    i32 bytes_to_read = read_be_word(stream);
    if (stream.handle_any_error())
        return false;
    bytes_to_read -= 2;
    if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
        return false;
    while (bytes_to_read > 0) {
        u8 info_byte = 0;
        stream >> info_byte;
        if (stream.handle_any_error())
            return false;
        u8 element_unit_hint = info_byte >> 4;
        if (element_unit_hint > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unsupported unit hint in quantization table: {}!", stream.offset(), element_unit_hint);
            return false;
        }
        u8 table_id = info_byte & 0x0F;
        if (table_id > 1) {
            dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), table_id);
            return false;
        }
        u32* table = table_id == 0 ? context.luma_table : context.chroma_table;
        for (int i = 0; i < 64; i++) {
            if (element_unit_hint == 0) {
                u8 tmp = 0;
                stream >> tmp;
                if (stream.handle_any_error())
                    return false;
                table[zigzag_map[i]] = tmp;
            } else {
                table[zigzag_map[i]] = read_be_word(stream);
                if (stream.handle_any_error())
                    return false;
            }
        }
        if (stream.handle_any_error())
            return false;

        bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
    }
    if (bytes_to_read != 0) {
        dbgln_if(JPG_DEBUG, "{}: Invalid length for one or more quantization tables!", stream.offset());
        return false;
    }

    return true;
}

static bool skip_marker_with_length(InputMemoryStream& stream)
{
    u16 bytes_to_skip = read_be_word(stream);
    bytes_to_skip -= 2;
    if (stream.handle_any_error())
        return false;
    stream.discard_or_error(bytes_to_skip);
    return !stream.handle_any_error();
}

static void dequantize(JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            for (auto it = context.components.begin(); it != context.components.end(); ++it) {
                auto& component = it->value;
                const u32* table = component.qtable_id == 0 ? context.luma_table : context.chroma_table;
                for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
                    for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
                        u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
                        Macroblock& block = macroblocks[mb_index];
                        int* block_component = component.serial_id == 0 ? block.y : (component.serial_id == 1 ? block.cb : block.cr);
                        for (u32 k = 0; k < 64; k++)
                            block_component[k] *= table[k];
                    }
                }
            }
        }
    }
}

static void inverse_dct(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
    static const float m0 = 2.0 * cos(1.0 / 16.0 * 2.0 * M_PI);
    static const float m1 = 2.0 * cos(2.0 / 16.0 * 2.0 * M_PI);
    static const float m3 = 2.0 * cos(2.0 / 16.0 * 2.0 * M_PI);
    static const float m5 = 2.0 * cos(3.0 / 16.0 * 2.0 * M_PI);
    static const float m2 = m0 - m5;
    static const float m4 = m0 + m5;
    static const float s0 = cos(0.0 / 16.0 * M_PI) / sqrt(8);
    static const float s1 = cos(1.0 / 16.0 * M_PI) / 2.0;
    static const float s2 = cos(2.0 / 16.0 * M_PI) / 2.0;
    static const float s3 = cos(3.0 / 16.0 * M_PI) / 2.0;
    static const float s4 = cos(4.0 / 16.0 * M_PI) / 2.0;
    static const float s5 = cos(5.0 / 16.0 * M_PI) / 2.0;
    static const float s6 = cos(6.0 / 16.0 * M_PI) / 2.0;
    static const float s7 = cos(7.0 / 16.0 * M_PI) / 2.0;

    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            for (auto it = context.components.begin(); it != context.components.end(); ++it) {
                auto& component = it->value;
                for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
                    for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
                        u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
                        Macroblock& block = macroblocks[mb_index];
                        i32* block_component = component.serial_id == 0 ? block.y : (component.serial_id == 1 ? block.cb : block.cr);
                        for (u32 k = 0; k < 8; ++k) {
                            const float g0 = block_component[0 * 8 + k] * s0;
                            const float g1 = block_component[4 * 8 + k] * s4;
                            const float g2 = block_component[2 * 8 + k] * s2;
                            const float g3 = block_component[6 * 8 + k] * s6;
                            const float g4 = block_component[5 * 8 + k] * s5;
                            const float g5 = block_component[1 * 8 + k] * s1;
                            const float g6 = block_component[7 * 8 + k] * s7;
                            const float g7 = block_component[3 * 8 + k] * s3;

                            const float f0 = g0;
                            const float f1 = g1;
                            const float f2 = g2;
                            const float f3 = g3;
                            const float f4 = g4 - g7;
                            const float f5 = g5 + g6;
                            const float f6 = g5 - g6;
                            const float f7 = g4 + g7;

                            const float e0 = f0;
                            const float e1 = f1;
                            const float e2 = f2 - f3;
                            const float e3 = f2 + f3;
                            const float e4 = f4;
                            const float e5 = f5 - f7;
                            const float e6 = f6;
                            const float e7 = f5 + f7;
                            const float e8 = f4 + f6;

                            const float d0 = e0;
                            const float d1 = e1;
                            const float d2 = e2 * m1;
                            const float d3 = e3;
                            const float d4 = e4 * m2;
                            const float d5 = e5 * m3;
                            const float d6 = e6 * m4;
                            const float d7 = e7;
                            const float d8 = e8 * m5;

                            const float c0 = d0 + d1;
                            const float c1 = d0 - d1;
                            const float c2 = d2 - d3;
                            const float c3 = d3;
                            const float c4 = d4 + d8;
                            const float c5 = d5 + d7;
                            const float c6 = d6 - d8;
                            const float c7 = d7;
                            const float c8 = c5 - c6;

                            const float b0 = c0 + c3;
                            const float b1 = c1 + c2;
                            const float b2 = c1 - c2;
                            const float b3 = c0 - c3;
                            const float b4 = c4 - c8;
                            const float b5 = c8;
                            const float b6 = c6 - c7;
                            const float b7 = c7;

                            block_component[0 * 8 + k] = b0 + b7;
                            block_component[1 * 8 + k] = b1 + b6;
                            block_component[2 * 8 + k] = b2 + b5;
                            block_component[3 * 8 + k] = b3 + b4;
                            block_component[4 * 8 + k] = b3 - b4;
                            block_component[5 * 8 + k] = b2 - b5;
                            block_component[6 * 8 + k] = b1 - b6;
                            block_component[7 * 8 + k] = b0 - b7;
                        }
                        for (u32 l = 0; l < 8; ++l) {
                            const float g0 = block_component[l * 8 + 0] * s0;
                            const float g1 = block_component[l * 8 + 4] * s4;
                            const float g2 = block_component[l * 8 + 2] * s2;
                            const float g3 = block_component[l * 8 + 6] * s6;
                            const float g4 = block_component[l * 8 + 5] * s5;
                            const float g5 = block_component[l * 8 + 1] * s1;
                            const float g6 = block_component[l * 8 + 7] * s7;
                            const float g7 = block_component[l * 8 + 3] * s3;

                            const float f0 = g0;
                            const float f1 = g1;
                            const float f2 = g2;
                            const float f3 = g3;
                            const float f4 = g4 - g7;
                            const float f5 = g5 + g6;
                            const float f6 = g5 - g6;
                            const float f7 = g4 + g7;

                            const float e0 = f0;
                            const float e1 = f1;
                            const float e2 = f2 - f3;
                            const float e3 = f2 + f3;
                            const float e4 = f4;
                            const float e5 = f5 - f7;
                            const float e6 = f6;
                            const float e7 = f5 + f7;
                            const float e8 = f4 + f6;

                            const float d0 = e0;
                            const float d1 = e1;
                            const float d2 = e2 * m1;
                            const float d3 = e3;
                            const float d4 = e4 * m2;
                            const float d5 = e5 * m3;
                            const float d6 = e6 * m4;
                            const float d7 = e7;
                            const float d8 = e8 * m5;

                            const float c0 = d0 + d1;
                            const float c1 = d0 - d1;
                            const float c2 = d2 - d3;
                            const float c3 = d3;
                            const float c4 = d4 + d8;
                            const float c5 = d5 + d7;
                            const float c6 = d6 - d8;
                            const float c7 = d7;
                            const float c8 = c5 - c6;

                            const float b0 = c0 + c3;
                            const float b1 = c1 + c2;
                            const float b2 = c1 - c2;
                            const float b3 = c0 - c3;
                            const float b4 = c4 - c8;
                            const float b5 = c8;
                            const float b6 = c6 - c7;
                            const float b7 = c7;

                            block_component[l * 8 + 0] = b0 + b7;
                            block_component[l * 8 + 1] = b1 + b6;
                            block_component[l * 8 + 2] = b2 + b5;
                            block_component[l * 8 + 3] = b3 + b4;
                            block_component[l * 8 + 4] = b3 - b4;
                            block_component[l * 8 + 5] = b2 - b5;
                            block_component[l * 8 + 6] = b1 - b6;
                            block_component[l * 8 + 7] = b0 - b7;
                        }
                    }
                }
            }
        }
    }
}

static void ycbcr_to_rgb(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
    for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
        for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
            const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
            const Macroblock& chroma = macroblocks[chroma_block_index];
            // Overflows are intentional.
            for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
                for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
                    u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
                    i32* y = macroblocks[mb_index].y;
                    i32* cb = macroblocks[mb_index].cb;
                    i32* cr = macroblocks[mb_index].cr;
                    for (u8 i = 7; i < 8; --i) {
                        for (u8 j = 7; j < 8; --j) {
                            const u8 pixel = i * 8 + j;
                            const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
                            const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
                            const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
                            int r = y[pixel] + 1.402f * chroma.cr[chroma_pixel] + 128;
                            int g = y[pixel] - 0.344f * chroma.cb[chroma_pixel] - 0.714f * chroma.cr[chroma_pixel] + 128;
                            int b = y[pixel] + 1.772f * chroma.cb[chroma_pixel] + 128;
                            y[pixel] = r < 0 ? 0 : (r > 255 ? 255 : r);
                            cb[pixel] = g < 0 ? 0 : (g > 255 ? 255 : g);
                            cr[pixel] = b < 0 ? 0 : (b > 255 ? 255 : b);
                        }
                    }
                }
            }
        }
    }
}

static bool compose_bitmap(JPGLoadingContext& context, const Vector<Macroblock>& macroblocks)
{
    context.bitmap = Bitmap::create_purgeable(BitmapFormat::RGB32, { context.frame.width, context.frame.height });
    if (!context.bitmap)
        return false;

    for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
        const u32 block_row = y / 8;
        const u32 pixel_row = y % 8;
        for (u32 x = 0; x < context.frame.width; x++) {
            const u32 block_column = x / 8;
            auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
            const u32 pixel_column = x % 8;
            const u32 pixel_index = pixel_row * 8 + pixel_column;
            const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
            context.bitmap->set_pixel(x, y, color);
        }
    }

    return true;
}

static bool parse_header(InputMemoryStream& stream, JPGLoadingContext& context)
{
    auto marker = read_marker_at_cursor(stream);
    if (stream.handle_any_error())
        return false;
    if (marker != JPG_SOI) {
        dbgln_if(JPG_DEBUG, "{}: SOI not found: {:x}!", stream.offset(), marker);
        return false;
    }
    for (;;) {
        marker = read_marker_at_cursor(stream);
        if (stream.handle_any_error())
            return false;

        // Set frame type if the marker marks a new frame.
        if (marker >= 0xFFC0 && marker <= 0xFFCF) {
            // Ignore interleaved markers.
            if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
                context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
            }
        }

        switch (marker) {
        case JPG_INVALID:
        case JPG_RST0:
        case JPG_RST1:
        case JPG_RST2:
        case JPG_RST3:
        case JPG_RST4:
        case JPG_RST5:
        case JPG_RST6:
        case JPG_RST7:
        case JPG_SOI:
        case JPG_EOI:
            dbgln_if(JPG_DEBUG, "{}: Unexpected marker {:x}!", stream.offset(), marker);
            return false;
        case JPG_SOF0:
            if (!read_start_of_frame(stream, context))
                return false;
            context.state = JPGLoadingContext::FrameDecoded;
            break;
        case JPG_DQT:
            if (!read_quantization_table(stream, context))
                return false;
            break;
        case JPG_RST:
            if (!read_reset_marker(stream, context))
                return false;
            break;
        case JPG_DHT:
            if (!read_huffman_table(stream, context))
                return false;
            break;
        case JPG_SOS:
            return read_start_of_scan(stream, context);
        default:
            if (!skip_marker_with_length(stream)) {
                dbgln_if(JPG_DEBUG, "{}: Error skipping marker: {:x}!", stream.offset(), marker);
                return false;
            }
            break;
        }
    }

    ASSERT_NOT_REACHED();
}

static bool scan_huffman_stream(InputMemoryStream& stream, JPGLoadingContext& context)
{
    u8 last_byte;
    u8 current_byte = 0;
    stream >> current_byte;
    if (stream.handle_any_error())
        return false;

    for (;;) {
        last_byte = current_byte;
        stream >> current_byte;
        if (stream.handle_any_error()) {
            dbgln_if(JPG_DEBUG, "{}: EOI not found!", stream.offset());
            return false;
        }

        if (last_byte == 0xFF) {
            if (current_byte == 0xFF)
                continue;
            if (current_byte == 0x00) {
                stream >> current_byte;
                if (stream.handle_any_error())
                    return false;
                context.huffman_stream.stream.append(last_byte);
                continue;
            }
            Marker marker = 0xFF00 | current_byte;
            if (marker == JPG_EOI)
                return true;
            if (marker >= JPG_RST0 && marker <= JPG_RST7) {
                context.huffman_stream.stream.append(marker);
                stream >> current_byte;
                if (stream.handle_any_error())
                    return false;
                continue;
            }
            dbgln_if(JPG_DEBUG, "{}: Invalid marker: {:x}!", stream.offset(), marker);
            return false;
        } else {
            context.huffman_stream.stream.append(last_byte);
        }
    }

    ASSERT_NOT_REACHED();
}

static bool decode_jpg(JPGLoadingContext& context)
{
    InputMemoryStream stream { { context.data, context.data_size } };

    if (!parse_header(stream, context))
        return false;
    if (!scan_huffman_stream(stream, context))
        return false;

    auto result = decode_huffman_stream(context);
    if (!result.has_value()) {
        dbgln_if(JPG_DEBUG, "{}: Failed to decode Macroblocks!", stream.offset());
        return false;
    }

    auto macroblocks = result.release_value();
    dequantize(context, macroblocks);
    inverse_dct(context, macroblocks);
    ycbcr_to_rgb(context, macroblocks);
    if (!compose_bitmap(context, macroblocks))
        return false;
    return true;
}

static RefPtr<Gfx::Bitmap> load_jpg_impl(const u8* data, size_t data_size)
{
    JPGLoadingContext context;
    context.data = data;
    context.data_size = data_size;

    if (!decode_jpg(context))
        return nullptr;

    return context.bitmap;
}

RefPtr<Gfx::Bitmap> load_jpg(const StringView& path)
{
    auto file_or_error = MappedFile::map(path);
    if (file_or_error.is_error())
        return nullptr;
    auto bitmap = load_jpg_impl((const u8*)file_or_error.value()->data(), file_or_error.value()->size());
    if (bitmap)
        bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded JPG: {}", bitmap->size(), LexicalPath::canonicalized_path(path)));
    return bitmap;
}

RefPtr<Gfx::Bitmap> load_jpg_from_memory(const u8* data, size_t length)
{
    auto bitmap = load_jpg_impl(data, length);
    if (bitmap)
        bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded jpg: <memory>", bitmap->size()));
    return bitmap;
}

JPGImageDecoderPlugin::JPGImageDecoderPlugin(const u8* data, size_t size)
{
    m_context = make<JPGLoadingContext>();
    m_context->data = data;
    m_context->data_size = size;
    m_context->huffman_stream.stream.ensure_capacity(50 * KiB);
}

JPGImageDecoderPlugin::~JPGImageDecoderPlugin()
{
}

IntSize JPGImageDecoderPlugin::size()
{
    if (m_context->state == JPGLoadingContext::State::Error)
        return {};
    if (m_context->state >= JPGLoadingContext::State::FrameDecoded)
        return { m_context->frame.width, m_context->frame.height };

    return {};
}

RefPtr<Gfx::Bitmap> JPGImageDecoderPlugin::bitmap()
{
    if (m_context->state == JPGLoadingContext::State::Error)
        return nullptr;
    if (m_context->state < JPGLoadingContext::State::BitmapDecoded) {
        if (!decode_jpg(*m_context)) {
            m_context->state = JPGLoadingContext::State::Error;
            return nullptr;
        }
        m_context->state = JPGLoadingContext::State::BitmapDecoded;
    }

    return m_context->bitmap;
}

void JPGImageDecoderPlugin::set_volatile()
{
    if (m_context->bitmap)
        m_context->bitmap->set_volatile();
}

bool JPGImageDecoderPlugin::set_nonvolatile()
{
    if (!m_context->bitmap)
        return false;
    return m_context->bitmap->set_nonvolatile();
}

bool JPGImageDecoderPlugin::sniff()
{
    return m_context->data_size > 3
        && m_context->data[0] == 0xFF
        && m_context->data[1] == 0xD8
        && m_context->data[2] == 0xFF;
}

bool JPGImageDecoderPlugin::is_animated()
{
    return false;
}

size_t JPGImageDecoderPlugin::loop_count()
{
    return 0;
}

size_t JPGImageDecoderPlugin::frame_count()
{
    return 1;
}

ImageFrameDescriptor JPGImageDecoderPlugin::frame(size_t i)
{
    if (i > 0) {
        return { bitmap(), 0 };
    }
    return {};
}
}