summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/FillPathImplementation.h
blob: 192ff85745bc918cbee7fd9aeccd4e1bd12f4a64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Debug.h>
#include <AK/QuickSort.h>
#include <LibGfx/Color.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>

namespace Gfx::Detail {

[[maybe_unused]] inline static void approximately_place_on_int_grid(FloatPoint ffrom, FloatPoint fto, IntPoint& from, IntPoint& to, Optional<IntPoint> previous_to)
{
    auto diffs = fto - ffrom;
    // Truncate all first (round down).
    from = ffrom.to_type<int>();
    to = fto.to_type<int>();
    // There are 16 possible configurations, by deciding to round each
    // coord up or down (and there are four coords, from.x from.y to.x to.y)
    // we will simply choose one which most closely matches the correct slope
    // with the following heuristic:
    // - if the x diff is positive or zero (that is, a right-to-left slant), round 'from.x' up and 'to.x' down.
    // - if the x diff is negative         (that is, a left-to-right slant), round 'from.x' down and 'to.x' up.
    // Note that we do not need to touch the 'y' attribute, as that is our scanline.
    if (diffs.x() >= 0) {
        from.set_x(from.x() + 1);
    } else {
        to.set_x(to.x() + 1);
    }
    if (previous_to.has_value() && from.x() != previous_to.value().x()) // The points have to line up, since we're using these lines to fill a shape.
        from.set_x(previous_to.value().x());
}

enum class FillPathMode {
    PlaceOnIntGrid,
    AllowFloatingPoints,
};

template<FillPathMode fill_path_mode, typename Painter>
void fill_path(Painter& painter, Path const& path, Color color, Gfx::Painter::WindingRule winding_rule)
{
    using GridCoordinateType = Conditional<fill_path_mode == FillPathMode::PlaceOnIntGrid, int, float>;
    using PointType = Point<GridCoordinateType>;
    auto draw_line = [&](auto... args) {
        if constexpr (requires { painter.draw_aliased_line(args...); })
            painter.draw_aliased_line(args...);
        else
            painter.draw_line(args...);
    };

    auto const& segments = path.split_lines();

    if (segments.size() == 0)
        return;

    Vector<Path::SplitLineSegment> active_list;
    active_list.ensure_capacity(segments.size());

    // first, grab the segments for the very first scanline
    GridCoordinateType first_y = path.bounding_box().bottom_right().y() + 1;
    GridCoordinateType last_y = path.bounding_box().top_left().y() - 1;
    float scanline = first_y;

    size_t last_active_segment { 0 };

    for (auto& segment : segments) {
        if (segment.maximum_y != scanline)
            break;
        active_list.append(segment);
        ++last_active_segment;
    }

    auto is_inside_shape = [winding_rule](int winding_number) {
        if (winding_rule == Gfx::Painter::WindingRule::Nonzero)
            return winding_number != 0;

        if (winding_rule == Gfx::Painter::WindingRule::EvenOdd)
            return winding_number % 2 == 0;

        VERIFY_NOT_REACHED();
    };

    auto increment_winding = [winding_rule](int& winding_number, PointType const& from, PointType const& to) {
        if (winding_rule == Gfx::Painter::WindingRule::EvenOdd) {
            ++winding_number;
            return;
        }

        if (winding_rule == Gfx::Painter::WindingRule::Nonzero) {
            if (from.dy_relative_to(to) < 0)
                ++winding_number;
            else
                --winding_number;
            return;
        }

        VERIFY_NOT_REACHED();
    };

    while (scanline >= last_y) {
        Optional<PointType> previous_to;
        if (active_list.size()) {
            // sort the active list by 'x' from right to left
            quick_sort(active_list, [](auto const& line0, auto const& line1) {
                return line1.x < line0.x;
            });
            if constexpr (fill_path_mode == FillPathMode::PlaceOnIntGrid && FILL_PATH_DEBUG) {
                if ((int)scanline % 10 == 0) {
                    painter.draw_text(Gfx::Rect<GridCoordinateType>(active_list.last().x - 20, scanline, 20, 10), String::number((int)scanline));
                }
            }

            if (active_list.size() > 1) {
                auto winding_number { winding_rule == Gfx::Painter::WindingRule::Nonzero ? 1 : 0 };
                for (size_t i = 1; i < active_list.size(); ++i) {
                    auto& previous = active_list[i - 1];
                    auto& current = active_list[i];

                    PointType from, to;
                    PointType truncated_from { previous.x, scanline };
                    PointType truncated_to { current.x, scanline };
                    if constexpr (fill_path_mode == FillPathMode::PlaceOnIntGrid) {
                        approximately_place_on_int_grid({ previous.x, scanline }, { current.x, scanline }, from, to, previous_to);
                    } else {
                        from = truncated_from;
                        to = truncated_to;
                    }

                    if (is_inside_shape(winding_number)) {
                        // The points between this segment and the previous are
                        // inside the shape

                        dbgln_if(FILL_PATH_DEBUG, "y={}: {} at {}: {} -- {}", scanline, winding_number, i, from, to);
                        draw_line(from, to, color, 1);
                    }

                    auto is_passing_through_maxima = scanline == previous.maximum_y
                        || scanline == previous.minimum_y
                        || scanline == current.maximum_y
                        || scanline == current.minimum_y;

                    auto is_passing_through_vertex = false;

                    if (is_passing_through_maxima) {
                        is_passing_through_vertex = previous.x == current.x;
                    }

                    if (!is_passing_through_vertex || previous.inverse_slope * current.inverse_slope < 0)
                        increment_winding(winding_number, truncated_from, truncated_to);

                    // update the x coord
                    active_list[i - 1].x -= active_list[i - 1].inverse_slope;
                }
                active_list.last().x -= active_list.last().inverse_slope;
            } else {
                auto point = PointType(active_list[0].x, scanline);
                draw_line(point, point, color);

                // update the x coord
                active_list.first().x -= active_list.first().inverse_slope;
            }
        }

        --scanline;
        // remove any edge that goes out of bound from the active list
        for (size_t i = 0, count = active_list.size(); i < count; ++i) {
            if (scanline <= active_list[i].minimum_y) {
                active_list.remove(i);
                --count;
                --i;
            }
        }
        for (size_t j = last_active_segment; j < segments.size(); ++j, ++last_active_segment) {
            auto& segment = segments[j];
            if (segment.maximum_y < scanline)
                break;
            if (segment.minimum_y >= scanline)
                continue;

            active_list.append(segment);
        }
    }

    if constexpr (FILL_PATH_DEBUG) {
        size_t i { 0 };
        for (auto& segment : segments) {
            draw_line(PointType(segment.from), PointType(segment.to), Color::from_hsv(i++ * 360.0 / segments.size(), 1.0, 1.0), 1);
        }
    }
}
}