summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/DisjointRectSet.cpp
blob: e2a4a0b1816cb5ff1d1514e983658fb3a866775b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <LibGfx/DisjointRectSet.h>

namespace Gfx {

bool DisjointRectSet::add_no_shatter(const IntRect& new_rect)
{
    if (new_rect.is_empty())
        return false;
    for (auto& rect : m_rects) {
        if (rect.contains(new_rect))
            return false;
    }

    m_rects.append(new_rect);
    return true;
}

void DisjointRectSet::shatter()
{
    Vector<IntRect, 32> output;
    output.ensure_capacity(m_rects.size());
    bool pass_had_intersections = false;
    do {
        pass_had_intersections = false;
        output.clear_with_capacity();
        for (size_t i = 0; i < m_rects.size(); ++i) {
            auto& r1 = m_rects[i];
            for (size_t j = 0; j < m_rects.size(); ++j) {
                if (i == j)
                    continue;
                auto& r2 = m_rects[j];
                if (!r1.intersects(r2))
                    continue;
                pass_had_intersections = true;
                auto pieces = r1.shatter(r2);
                for (auto& piece : pieces)
                    output.append(piece);
                m_rects.remove(i);
                for (; i < m_rects.size(); ++i)
                    output.append(m_rects[i]);
                goto next_pass;
            }
            output.append(r1);
        }
    next_pass:
        swap(output, m_rects);
    } while (pass_had_intersections);
}

void DisjointRectSet::move_by(int dx, int dy)
{
    for (auto& r : m_rects)
        r.translate_by(dx, dy);
}

bool DisjointRectSet::contains(const IntRect& rect) const
{
    if (is_empty() || rect.is_empty())
        return false;

    // TODO: This could use some optimization
    DisjointRectSet remainder(rect);
    for (auto& r : m_rects) {
        auto shards = remainder.shatter(r);
        if (shards.is_empty())
            return true;
        remainder = move(shards);
    }
    return false;
}

bool DisjointRectSet::intersects(const IntRect& rect) const
{
    for (auto& r : m_rects) {
        if (r.intersects(rect))
            return true;
    }
    return false;
}

bool DisjointRectSet::intersects(const DisjointRectSet& rects) const
{
    if (this == &rects)
        return true;

    for (auto& r : m_rects) {
        for (auto& r2 : rects.m_rects) {
            if (r.intersects(r2))
                return true;
        }
    }
    return false;
}

DisjointRectSet DisjointRectSet::intersected(const IntRect& rect) const
{
    DisjointRectSet intersected_rects;
    intersected_rects.m_rects.ensure_capacity(m_rects.capacity());
    for (auto& r : m_rects) {
        auto intersected_rect = r.intersected(rect);
        if (!intersected_rect.is_empty())
            intersected_rects.m_rects.append(intersected_rect);
    }
    // Since there should be no overlaps, we don't need to call shatter()
    return intersected_rects;
}

DisjointRectSet DisjointRectSet::intersected(const DisjointRectSet& rects) const
{
    if (&rects == this)
        return clone();
    if (is_empty() || rects.is_empty())
        return {};

    DisjointRectSet intersected_rects;
    intersected_rects.m_rects.ensure_capacity(m_rects.capacity());
    for (auto& r : m_rects) {
        for (auto& r2 : rects.m_rects) {
            auto intersected_rect = r.intersected(r2);
            if (!intersected_rect.is_empty())
                intersected_rects.m_rects.append(intersected_rect);
        }
    }
    // Since there should be no overlaps, we don't need to call shatter()
    return intersected_rects;
}

DisjointRectSet DisjointRectSet::shatter(const IntRect& hammer) const
{
    if (hammer.is_empty())
        return clone();

    DisjointRectSet shards;
    for (auto& rect : m_rects) {
        for (auto& shard : rect.shatter(hammer))
            shards.add_no_shatter(shard);
    }
    // Since there should be no overlaps, we don't need to call shatter()
    return shards;
}

DisjointRectSet DisjointRectSet::shatter(const DisjointRectSet& hammer) const
{
    if (this == &hammer)
        return {};
    if (hammer.is_empty() || !intersects(hammer))
        return clone();

    // TODO: This could use some optimization
    DisjointRectSet shards = shatter(hammer.m_rects[0]);
    auto rects_count = hammer.m_rects.size();
    for (size_t i = 1; i < rects_count && !shards.is_empty(); i++) {
        if (hammer.m_rects[i].intersects(shards.m_rects)) {
            auto shattered = shards.shatter(hammer.m_rects[i]);
            shards = move(shattered);
        }
    }
    // Since there should be no overlaps, we don't need to call shatter()
    return shards;
}

}