summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/Bitmap.cpp
blob: 1836167a1537bffbee1f3e596916ff6e9595435a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Checked.h>
#include <AK/LexicalPath.h>
#include <AK/Memory.h>
#include <AK/MemoryStream.h>
#include <AK/Optional.h>
#include <AK/ScopeGuard.h>
#include <AK/String.h>
#include <LibGfx/BMPLoader.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/DDSLoader.h>
#include <LibGfx/GIFLoader.h>
#include <LibGfx/ICOLoader.h>
#include <LibGfx/JPGLoader.h>
#include <LibGfx/PBMLoader.h>
#include <LibGfx/PGMLoader.h>
#include <LibGfx/PNGLoader.h>
#include <LibGfx/PPMLoader.h>
#include <LibGfx/ShareableBitmap.h>
#include <errno.h>
#include <stdio.h>
#include <sys/mman.h>

namespace Gfx {

struct BackingStore {
    void* data { nullptr };
    size_t pitch { 0 };
    size_t size_in_bytes { 0 };
};

size_t Bitmap::minimum_pitch(size_t physical_width, BitmapFormat format)
{
    size_t element_size;
    switch (determine_storage_format(format)) {
    case StorageFormat::Indexed8:
        element_size = 1;
        break;
    case StorageFormat::BGRx8888:
    case StorageFormat::BGRA8888:
    case StorageFormat::RGBA8888:
        element_size = 4;
        break;
    default:
        VERIFY_NOT_REACHED();
    }

    return physical_width * element_size;
}

static bool size_would_overflow(BitmapFormat format, const IntSize& size, int scale_factor)
{
    if (size.width() < 0 || size.height() < 0)
        return true;
    // This check is a bit arbitrary, but should protect us from most shenanigans:
    if (size.width() >= INT16_MAX || size.height() >= INT16_MAX || scale_factor < 1 || scale_factor > 4)
        return true;
    // In contrast, this check is absolutely necessary:
    size_t pitch = Bitmap::minimum_pitch(size.width() * scale_factor, format);
    return Checked<size_t>::multiplication_would_overflow(pitch, size.height() * scale_factor);
}

RefPtr<Bitmap> Bitmap::try_create(BitmapFormat format, const IntSize& size, int scale_factor)
{
    auto backing_store = Bitmap::try_allocate_backing_store(format, size, scale_factor);
    if (!backing_store.has_value())
        return nullptr;
    return adopt_ref(*new Bitmap(format, size, scale_factor, backing_store.value()));
}

RefPtr<Bitmap> Bitmap::try_create_shareable(BitmapFormat format, const IntSize& size, int scale_factor)
{
    if (size_would_overflow(format, size, scale_factor))
        return nullptr;

    const auto pitch = minimum_pitch(size.width() * scale_factor, format);
    const auto data_size = size_in_bytes(pitch, size.height() * scale_factor);

    auto buffer = Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(data_size, PAGE_SIZE));
    if (!buffer.is_valid())
        return nullptr;
    return Bitmap::try_create_with_anonymous_buffer(format, buffer, size, scale_factor, {});
}

Bitmap::Bitmap(BitmapFormat format, const IntSize& size, int scale_factor, const BackingStore& backing_store)
    : m_size(size)
    , m_scale(scale_factor)
    , m_data(backing_store.data)
    , m_pitch(backing_store.pitch)
    , m_format(format)
{
    VERIFY(!m_size.is_empty());
    VERIFY(!size_would_overflow(format, size, scale_factor));
    VERIFY(m_data);
    VERIFY(backing_store.size_in_bytes == size_in_bytes());
    allocate_palette_from_format(format, {});
    m_needs_munmap = true;
}

RefPtr<Bitmap> Bitmap::try_create_wrapper(BitmapFormat format, const IntSize& size, int scale_factor, size_t pitch, void* data)
{
    if (size_would_overflow(format, size, scale_factor))
        return nullptr;
    return adopt_ref(*new Bitmap(format, size, scale_factor, pitch, data));
}

RefPtr<Bitmap> Bitmap::try_load_from_file(String const& path, int scale_factor)
{
    if (scale_factor > 1 && path.starts_with("/res/")) {
        LexicalPath lexical_path { path };
        StringBuilder highdpi_icon_path;
        highdpi_icon_path.append(lexical_path.dirname());
        highdpi_icon_path.append('/');
        highdpi_icon_path.append(lexical_path.title());
        highdpi_icon_path.appendff("-{}x.", scale_factor);
        highdpi_icon_path.append(lexical_path.extension());

        RefPtr<Bitmap> bmp;
#define __ENUMERATE_IMAGE_FORMAT(Name, Ext)                    \
    if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) \
        bmp = load_##Name(highdpi_icon_path.to_string());
        ENUMERATE_IMAGE_FORMATS
#undef __ENUMERATE_IMAGE_FORMAT
        if (bmp) {
            VERIFY(bmp->width() % scale_factor == 0);
            VERIFY(bmp->height() % scale_factor == 0);
            bmp->m_size.set_width(bmp->width() / scale_factor);
            bmp->m_size.set_height(bmp->height() / scale_factor);
            bmp->m_scale = scale_factor;
            return bmp;
        }
    }

#define __ENUMERATE_IMAGE_FORMAT(Name, Ext)                    \
    if (path.ends_with(Ext, CaseSensitivity::CaseInsensitive)) \
        return load_##Name(path);
    ENUMERATE_IMAGE_FORMATS
#undef __ENUMERATE_IMAGE_FORMAT

    return nullptr;
}

Bitmap::Bitmap(BitmapFormat format, const IntSize& size, int scale_factor, size_t pitch, void* data)
    : m_size(size)
    , m_scale(scale_factor)
    , m_data(data)
    , m_pitch(pitch)
    , m_format(format)
{
    VERIFY(pitch >= minimum_pitch(size.width() * scale_factor, format));
    VERIFY(!size_would_overflow(format, size, scale_factor));
    // FIXME: assert that `data` is actually long enough!

    allocate_palette_from_format(format, {});
}

static bool check_size(const IntSize& size, int scale_factor, BitmapFormat format, unsigned actual_size)
{
    // FIXME: Code duplication of size_in_bytes() and m_pitch
    unsigned expected_size_min = Bitmap::minimum_pitch(size.width() * scale_factor, format) * size.height() * scale_factor;
    unsigned expected_size_max = round_up_to_power_of_two(expected_size_min, PAGE_SIZE);
    if (expected_size_min > actual_size || actual_size > expected_size_max) {
        // Getting here is most likely an error.
        dbgln("Constructing a shared bitmap for format {} and size {} @ {}x, which demands {} bytes, which rounds up to at most {}.",
            static_cast<int>(format),
            size,
            scale_factor,
            expected_size_min,
            expected_size_max);

        dbgln("However, we were given {} bytes, which is outside this range?! Refusing cowardly.", actual_size);
        return false;
    }
    return true;
}

RefPtr<Bitmap> Bitmap::try_create_with_anonymous_buffer(BitmapFormat format, Core::AnonymousBuffer buffer, const IntSize& size, int scale_factor, const Vector<RGBA32>& palette)
{
    if (size_would_overflow(format, size, scale_factor))
        return nullptr;

    return adopt_ref(*new Bitmap(format, move(buffer), size, scale_factor, palette));
}

/// Read a bitmap as described by:
/// - actual size
/// - width
/// - height
/// - scale_factor
/// - format
/// - palette count
/// - palette data (= palette count * BGRA8888)
/// - image data (= actual size * u8)
RefPtr<Bitmap> Bitmap::try_create_from_serialized_byte_buffer(ByteBuffer&& buffer)
{
    InputMemoryStream stream { buffer };
    size_t actual_size;
    unsigned width;
    unsigned height;
    unsigned scale_factor;
    BitmapFormat format;
    unsigned palette_size;
    Vector<RGBA32> palette;

    auto read = [&]<typename T>(T& value) {
        if (stream.read({ &value, sizeof(T) }) != sizeof(T))
            return false;
        return true;
    };

    if (!read(actual_size) || !read(width) || !read(height) || !read(scale_factor) || !read(format) || !read(palette_size))
        return nullptr;

    if (format > BitmapFormat::BGRA8888 || format < BitmapFormat::Indexed1)
        return nullptr;

    if (!check_size({ width, height }, scale_factor, format, actual_size))
        return {};

    palette.ensure_capacity(palette_size);
    for (size_t i = 0; i < palette_size; ++i) {
        if (!read(palette[i]))
            return {};
    }

    if (stream.remaining() < actual_size)
        return {};

    auto data = stream.bytes().slice(stream.offset(), actual_size);

    auto bitmap = Bitmap::try_create(format, { width, height }, scale_factor);
    if (!bitmap)
        return {};

    bitmap->m_palette = new RGBA32[palette_size];
    memcpy(bitmap->m_palette, palette.data(), palette_size * sizeof(RGBA32));

    data.copy_to({ bitmap->scanline(0), bitmap->size_in_bytes() });

    return bitmap;
}

ByteBuffer Bitmap::serialize_to_byte_buffer() const
{
    auto buffer = ByteBuffer::create_uninitialized(sizeof(size_t) + 4 * sizeof(unsigned) + sizeof(BitmapFormat) + sizeof(RGBA32) * palette_size(m_format) + size_in_bytes());
    OutputMemoryStream stream { buffer };

    auto write = [&]<typename T>(T value) {
        if (stream.write({ &value, sizeof(T) }) != sizeof(T))
            return false;
        return true;
    };

    auto palette = palette_to_vector();

    if (!write(size_in_bytes()) || !write((unsigned)size().width()) || !write((unsigned)size().height()) || !write((unsigned)scale()) || !write(m_format) || !write((unsigned)palette.size()))
        return {};

    for (auto& p : palette) {
        if (!write(p))
            return {};
    }

    auto size = size_in_bytes();
    VERIFY(stream.remaining() == size);
    if (stream.write({ scanline(0), size }) != size)
        return {};

    return buffer;
}

Bitmap::Bitmap(BitmapFormat format, Core::AnonymousBuffer buffer, const IntSize& size, int scale_factor, const Vector<RGBA32>& palette)
    : m_size(size)
    , m_scale(scale_factor)
    , m_data(buffer.data<void>())
    , m_pitch(minimum_pitch(size.width() * scale_factor, format))
    , m_format(format)
    , m_buffer(move(buffer))
{
    VERIFY(!is_indexed() || !palette.is_empty());
    VERIFY(!size_would_overflow(format, size, scale_factor));

    if (is_indexed(m_format))
        allocate_palette_from_format(m_format, palette);
}

RefPtr<Gfx::Bitmap> Bitmap::clone() const
{
    auto new_bitmap = Bitmap::try_create(format(), size(), scale());

    if (!new_bitmap)
        return nullptr;

    VERIFY(size_in_bytes() == new_bitmap->size_in_bytes());
    memcpy(new_bitmap->scanline(0), scanline(0), size_in_bytes());

    return new_bitmap;
}

RefPtr<Gfx::Bitmap> Bitmap::rotated(Gfx::RotationDirection rotation_direction) const
{
    auto new_bitmap = Gfx::Bitmap::try_create(this->format(), { height(), width() }, scale());
    if (!new_bitmap)
        return nullptr;

    auto w = this->physical_width();
    auto h = this->physical_height();
    for (int i = 0; i < w; i++) {
        for (int j = 0; j < h; j++) {
            Color color;
            if (rotation_direction == Gfx::RotationDirection::CounterClockwise)
                color = this->get_pixel(w - i - 1, j);
            else
                color = this->get_pixel(i, h - j - 1);

            new_bitmap->set_pixel(j, i, color);
        }
    }

    return new_bitmap;
}

RefPtr<Gfx::Bitmap> Bitmap::flipped(Gfx::Orientation orientation) const
{
    auto new_bitmap = Gfx::Bitmap::try_create(this->format(), { width(), height() }, scale());
    if (!new_bitmap)
        return nullptr;

    auto w = this->physical_width();
    auto h = this->physical_height();
    for (int i = 0; i < w; i++) {
        for (int j = 0; j < h; j++) {
            Color color = this->get_pixel(i, j);
            if (orientation == Orientation::Vertical)
                new_bitmap->set_pixel(i, h - j - 1, color);
            else
                new_bitmap->set_pixel(w - i - 1, j, color);
        }
    }

    return new_bitmap;
}

RefPtr<Gfx::Bitmap> Bitmap::scaled(int sx, int sy) const
{
    VERIFY(sx >= 0 && sy >= 0);
    if (sx == 1 && sy == 1)
        return this;

    auto new_bitmap = Gfx::Bitmap::try_create(format(), { width() * sx, height() * sy }, scale());
    if (!new_bitmap)
        return nullptr;

    auto old_width = physical_width();
    auto old_height = physical_height();

    for (int y = 0; y < old_height; y++) {
        for (int x = 0; x < old_width; x++) {
            auto color = get_pixel(x, y);

            auto base_x = x * sx;
            auto base_y = y * sy;
            for (int new_y = base_y; new_y < base_y + sy; new_y++) {
                for (int new_x = base_x; new_x < base_x + sx; new_x++) {
                    new_bitmap->set_pixel(new_x, new_y, color);
                }
            }
        }
    }

    return new_bitmap;
}

// http://fourier.eng.hmc.edu/e161/lectures/resize/node3.html
RefPtr<Gfx::Bitmap> Bitmap::scaled(float sx, float sy) const
{
    VERIFY(sx >= 0.0f && sy >= 0.0f);
    if (floorf(sx) == sx && floorf(sy) == sy)
        return scaled(static_cast<int>(sx), static_cast<int>(sy));

    int scaled_width = (int)ceilf(sx * (float)width());
    int scaled_height = (int)ceilf(sy * (float)height());

    auto new_bitmap = Gfx::Bitmap::try_create(format(), { scaled_width, scaled_height }, scale());
    if (!new_bitmap)
        return nullptr;

    auto old_width = physical_width();
    auto old_height = physical_height();
    auto new_width = new_bitmap->physical_width();
    auto new_height = new_bitmap->physical_height();

    // The interpolation goes out of bounds on the bottom- and right-most edges.
    // We handle those in two specialized loops not only to make them faster, but
    // also to avoid four branch checks for every pixel.

    for (int y = 0; y < new_height - 1; y++) {
        for (int x = 0; x < new_width - 1; x++) {
            auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
            auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);

            int i = floorf(p);
            int j = floorf(q);
            float u = p - static_cast<float>(i);
            float v = q - static_cast<float>(j);

            auto a = get_pixel(i, j);
            auto b = get_pixel(i + 1, j);
            auto c = get_pixel(i, j + 1);
            auto d = get_pixel(i + 1, j + 1);

            auto e = a.interpolate(b, u);
            auto f = c.interpolate(d, u);
            auto color = e.interpolate(f, v);
            new_bitmap->set_pixel(x, y, color);
        }
    }

    // Bottom strip (excluding last pixel)
    auto old_bottom_y = old_height - 1;
    auto new_bottom_y = new_height - 1;
    for (int x = 0; x < new_width - 1; x++) {
        auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);

        int i = floorf(p);
        float u = p - static_cast<float>(i);

        auto a = get_pixel(i, old_bottom_y);
        auto b = get_pixel(i + 1, old_bottom_y);
        auto color = a.interpolate(b, u);
        new_bitmap->set_pixel(x, new_bottom_y, color);
    }

    // Right strip (excluding last pixel)
    auto old_right_x = old_width - 1;
    auto new_right_x = new_width - 1;
    for (int y = 0; y < new_height - 1; y++) {
        auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);

        int j = floorf(q);
        float v = q - static_cast<float>(j);

        auto c = get_pixel(old_right_x, j);
        auto d = get_pixel(old_right_x, j + 1);

        auto color = c.interpolate(d, v);
        new_bitmap->set_pixel(new_right_x, y, color);
    }

    // Bottom-right pixel
    new_bitmap->set_pixel(new_width - 1, new_height - 1, get_pixel(physical_width() - 1, physical_height() - 1));

    return new_bitmap;
}

RefPtr<Gfx::Bitmap> Bitmap::cropped(Gfx::IntRect crop) const
{
    auto new_bitmap = Gfx::Bitmap::try_create(format(), { crop.width(), crop.height() }, 1);
    if (!new_bitmap)
        return nullptr;

    for (int y = 0; y < crop.height(); ++y) {
        for (int x = 0; x < crop.width(); ++x) {
            int global_x = x + crop.left();
            int global_y = y + crop.top();
            if (global_x >= physical_width() || global_y >= physical_height() || global_x < 0 || global_y < 0) {
                new_bitmap->set_pixel(x, y, Gfx::Color::Black);
            } else {
                new_bitmap->set_pixel(x, y, get_pixel(global_x, global_y));
            }
        }
    }
    return new_bitmap;
}

RefPtr<Bitmap> Bitmap::to_bitmap_backed_by_anonymous_buffer() const
{
    if (m_buffer.is_valid())
        return *this;
    auto buffer = Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(size_in_bytes(), PAGE_SIZE));
    if (!buffer.is_valid())
        return nullptr;
    auto bitmap = Bitmap::try_create_with_anonymous_buffer(m_format, move(buffer), size(), scale(), palette_to_vector());
    if (!bitmap)
        return nullptr;
    memcpy(bitmap->scanline(0), scanline(0), size_in_bytes());
    return bitmap;
}

Bitmap::~Bitmap()
{
    if (m_needs_munmap) {
        int rc = munmap(m_data, size_in_bytes());
        VERIFY(rc == 0);
    }
    m_data = nullptr;
    delete[] m_palette;
}

void Bitmap::set_mmap_name([[maybe_unused]] String const& name)
{
    VERIFY(m_needs_munmap);
#ifdef __serenity__
    ::set_mmap_name(m_data, size_in_bytes(), name.characters());
#endif
}

void Bitmap::fill(Color color)
{
    VERIFY(!is_indexed(m_format));
    for (int y = 0; y < physical_height(); ++y) {
        auto* scanline = this->scanline(y);
        fast_u32_fill(scanline, color.value(), physical_width());
    }
}

void Bitmap::set_volatile()
{
    if (m_volatile)
        return;
#ifdef __serenity__
    int rc = madvise(m_data, size_in_bytes(), MADV_SET_VOLATILE);
    if (rc < 0) {
        perror("madvise(MADV_SET_VOLATILE)");
        VERIFY_NOT_REACHED();
    }
#endif
    m_volatile = true;
}

[[nodiscard]] bool Bitmap::set_nonvolatile(bool& was_purged)
{
    if (!m_volatile) {
        was_purged = false;
        return true;
    }

#ifdef __serenity__
    int rc = madvise(m_data, size_in_bytes(), MADV_SET_NONVOLATILE);
    if (rc < 0) {
        if (errno == ENOMEM) {
            was_purged = true;
            return false;
        }
        perror("madvise(MADV_SET_NONVOLATILE)");
        VERIFY_NOT_REACHED();
    }
    was_purged = rc != 0;
#endif
    m_volatile = false;
    return true;
}

ShareableBitmap Bitmap::to_shareable_bitmap() const
{
    auto bitmap = to_bitmap_backed_by_anonymous_buffer();
    if (!bitmap)
        return {};
    return ShareableBitmap(*bitmap);
}

Optional<BackingStore> Bitmap::try_allocate_backing_store(BitmapFormat format, IntSize const& size, int scale_factor)
{
    if (size_would_overflow(format, size, scale_factor))
        return {};

    const auto pitch = minimum_pitch(size.width() * scale_factor, format);
    const auto data_size_in_bytes = size_in_bytes(pitch, size.height() * scale_factor);

    int map_flags = MAP_ANONYMOUS | MAP_PRIVATE;
#ifdef __serenity__
    map_flags |= MAP_PURGEABLE;
    void* data = mmap_with_name(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0, String::formatted("GraphicsBitmap [{}]", size).characters());
#else
    void* data = mmap(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0);
#endif
    if (data == MAP_FAILED) {
        perror("mmap");
        return {};
    }
    return { { data, pitch, data_size_in_bytes } };
}

void Bitmap::allocate_palette_from_format(BitmapFormat format, const Vector<RGBA32>& source_palette)
{
    size_t size = palette_size(format);
    if (size == 0)
        return;
    m_palette = new RGBA32[size];
    if (!source_palette.is_empty()) {
        VERIFY(source_palette.size() == size);
        memcpy(m_palette, source_palette.data(), size * sizeof(RGBA32));
    }
}

Vector<RGBA32> Bitmap::palette_to_vector() const
{
    Vector<RGBA32> vector;
    auto size = palette_size(m_format);
    vector.ensure_capacity(size);
    for (size_t i = 0; i < size; ++i)
        vector.unchecked_append(palette_color(i).value());
    return vector;
}
}