summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/AffineTransform.cpp
blob: f0c9df23829b3d164f3f023f352e7ab2283395a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Optional.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Rect.h>

namespace Gfx {

bool AffineTransform::is_identity() const
{
    return m_values[0] == 1 && m_values[1] == 0 && m_values[2] == 0 && m_values[3] == 1 && m_values[4] == 0 && m_values[5] == 0;
}

static float hypotenuse(float x, float y)
{
    // FIXME: This won't handle overflow :(
    return sqrtf(x * x + y * y);
}

float AffineTransform::x_scale() const
{
    return hypotenuse(m_values[0], m_values[1]);
}

float AffineTransform::y_scale() const
{
    return hypotenuse(m_values[2], m_values[3]);
}

FloatPoint AffineTransform::scale() const
{
    return { x_scale(), y_scale() };
}

float AffineTransform::x_translation() const
{
    return e();
}

float AffineTransform::y_translation() const
{
    return f();
}

FloatPoint AffineTransform::translation() const
{
    return { x_translation(), y_translation() };
}

AffineTransform& AffineTransform::scale(float sx, float sy)
{
    m_values[0] *= sx;
    m_values[1] *= sx;
    m_values[2] *= sy;
    m_values[3] *= sy;
    return *this;
}

AffineTransform& AffineTransform::scale(const FloatPoint& s)
{
    return scale(s.x(), s.y());
}

AffineTransform& AffineTransform::set_scale(float sx, float sy)
{
    m_values[0] = sx;
    m_values[1] = 0;
    m_values[2] = 0;
    m_values[3] = sy;
    return *this;
}

AffineTransform& AffineTransform::set_scale(const FloatPoint& s)
{
    return set_scale(s.x(), s.y());
}

AffineTransform& AffineTransform::translate(float tx, float ty)
{
    m_values[4] += tx * m_values[0] + ty * m_values[2];
    m_values[5] += tx * m_values[1] + ty * m_values[3];
    return *this;
}

AffineTransform& AffineTransform::translate(const FloatPoint& t)
{
    return translate(t.x(), t.y());
}

AffineTransform& AffineTransform::set_translation(float tx, float ty)
{
    m_values[4] = tx;
    m_values[5] = ty;
    return *this;
}

AffineTransform& AffineTransform::set_translation(const FloatPoint& t)
{
    return set_translation(t.x(), t.y());
}

AffineTransform& AffineTransform::multiply(const AffineTransform& other)
{
    AffineTransform result;
    result.m_values[0] = other.a() * a() + other.b() * c();
    result.m_values[1] = other.a() * b() + other.b() * d();
    result.m_values[2] = other.c() * a() + other.d() * c();
    result.m_values[3] = other.c() * b() + other.d() * d();
    result.m_values[4] = other.e() * a() + other.f() * c() + e();
    result.m_values[5] = other.e() * b() + other.f() * d() + f();
    *this = result;
    return *this;
}

AffineTransform& AffineTransform::rotate_radians(float radians)
{
    float sin_angle = sinf(radians);
    float cos_angle = cosf(radians);
    AffineTransform rotation(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0);
    multiply(rotation);
    return *this;
}

void AffineTransform::map(float unmapped_x, float unmapped_y, float& mapped_x, float& mapped_y) const
{
    mapped_x = a() * unmapped_x + b() * unmapped_y + m_values[4];
    mapped_y = c() * unmapped_x + d() * unmapped_y + m_values[5];
}

template<>
IntPoint AffineTransform::map(const IntPoint& point) const
{
    float mapped_x;
    float mapped_y;
    map(static_cast<float>(point.x()), static_cast<float>(point.y()), mapped_x, mapped_y);
    return { roundf(mapped_x), roundf(mapped_y) };
}

template<>
FloatPoint AffineTransform::map(const FloatPoint& point) const
{
    float mapped_x;
    float mapped_y;
    map(point.x(), point.y(), mapped_x, mapped_y);
    return { mapped_x, mapped_y };
}

template<>
IntSize AffineTransform::map(const IntSize& size) const
{
    return {
        roundf(static_cast<float>(size.width()) * x_scale()),
        roundf(static_cast<float>(size.height()) * y_scale()),
    };
}

template<>
FloatSize AffineTransform::map(const FloatSize& size) const
{
    return { size.width() * x_scale(), size.height() * y_scale() };
}

template<typename T>
static T smallest_of(T p1, T p2, T p3, T p4)
{
    return min(min(p1, p2), min(p3, p4));
}

template<typename T>
static T largest_of(T p1, T p2, T p3, T p4)
{
    return max(max(p1, p2), max(p3, p4));
}

template<>
FloatRect AffineTransform::map(const FloatRect& rect) const
{
    FloatPoint p1 = map(rect.top_left());
    FloatPoint p2 = map(rect.top_right().translated(1, 0));
    FloatPoint p3 = map(rect.bottom_right().translated(1, 1));
    FloatPoint p4 = map(rect.bottom_left().translated(0, 1));
    float left = smallest_of(p1.x(), p2.x(), p3.x(), p4.x());
    float top = smallest_of(p1.y(), p2.y(), p3.y(), p4.y());
    float right = largest_of(p1.x(), p2.x(), p3.x(), p4.x());
    float bottom = largest_of(p1.y(), p2.y(), p3.y(), p4.y());
    return { left, top, right - left, bottom - top };
}

template<>
IntRect AffineTransform::map(const IntRect& rect) const
{
    return enclosing_int_rect(map(FloatRect(rect)));
}

}